

BIOLOGY

Paper 0610/11
Multiple Choice (Core)

Question Number	Key						
1	B	11	D	21	D	31	C
2	B	12	B	22	A	32	A
3	D	13	C	23	B	33	D
4	D	14	A	24	B	34	A
5	B	15	D	25	D	35	A
6	B	16	D	26	B	36	B
7	B	17	D	27	D	37	A
8	A	18	D	28	A	38	C
9	C	19	C	29	B	39	D
10	D	20	C	30	A	40	D

General comments

There was a good understanding of the binomial naming system, specialised cells for oxygen transport, food tests, the effects of pH on enzyme activity, pancreatic hormones, HIV transmission and the characteristics of bacteria that make them useful for biotechnology.

Candidates should be able to use descriptions of terms in the syllabus such as egestion, artery, vein, sexual reproduction, and biodiversity.

Candidates need to read all of the information provided to ensure they are answering the question asked (for example **Question 1, 7, 9 and 29**) and interpret diagrams carefully (such as in **Question 19 and 25**).

Comments on specific questions

Question 3

Many candidates incorrectly selected option **B**. Candidates are expected to know the characteristics used to classify the main groups of vertebrates.

Question 7

While many candidates selected the correct answer, option **A** was a common incorrect response. So although many knew the correct substance fewer understood the direction of movement of molecules during diffusion.

Question 8

Many candidates chose option **C**. Candidates should be familiar with this type of investigation and understand that water will move out of the potato when it is in a very concentrated sugar solution causing a loss of mass.

Question 19

Many candidates correctly selected the renal vein as the correctly labelled vessel, but a similar number incorrectly thought the pulmonary artery label was correct. This vessel was the pulmonary vein.

Question 21

Many candidates knew the requirements for germination, but some thought that this required photosynthesis rather than respiration and selected option **B**.

Question 25

Most candidates could identify the relay and sensory neurones from the diagram.

Question 33

This proved to be challenging with only a few candidates correctly applying their knowledge of variation to this novel context.

Question 35

Many candidates could correctly apply the principles of adaptive features to this example.

Question 39

Some candidates incorrectly thought that reducing biodiversity would conserve endangered species.

BIOLOGY

Paper 0610/12
Multiple Choice (Core)

Question Number	Key
1	D
2	D
3	B
4	D
5	D
6	C
7	C
8	D
9	B
10	B
Question Number	Key
11	A
12	B
13	C
14	C
15	D
16	B
17	B
18	C
19	D
20	D
Question Number	Key
21	B
22	D
23	D
24	A
25	C
26	D
27	B
28	A
29	A
30	B
Question Number	Key
31	B
32	C
33	D
34	C
35	C
36	A
37	A
38	B
39	A
40	B

General comments

There was a good understanding of the role of magnesium ions, disease prevention, the role of testosterone in the development of secondary sexual characteristics and how to interpret bar graphs.

Candidates should be able to recall descriptions of terms in the syllabus such as continuous variation, genotype, and osmosis.

Candidates need to read all of the information provided to ensure they are answering the question asked (for example **Question 21** and **28**) and interpret graphs precisely (such as in **Question 39**).

Comments on specific questions

Question 5

Some candidates were able to order the specimens from smallest to largest. It is important to read the question carefully as the most common incorrect answer was from largest to smallest.

Question 6

Many candidates did not realise that osmosis must refer to the movement of water molecules.

Question 7

Some candidates were unclear about the synthesis of large molecules. Common errors were that amino acids make up carbohydrates or fatty acids make up glycogen.

Question 14

Many candidates did not know where amylase acts with many choosing the stomach or the pancreas.

Question 15

The roles of the small intestine and the colon in absorption were not well understood with few choosing option D.

Question 16

Many candidates did not realise that the space shown in the leaf diagram contained air and so arrow 1 represents evaporation rather than osmosis and arrow 2 shows diffusion of water vapour and not evaporation.

Question 30

Some candidates could correctly work out the probability of a child having cystic fibrosis, but a similar number thought this was 50%. Candidates should carefully work through the information given in the question.

Question 36

Candidates seemed unfamiliar with the sigmoidal growth curve with most choosing the exponential (log) or stationary phase instead of the lag phase.

BIOLOGY

Paper 0610/13
Multiple Choice (Core)

Question Number	Key						
1	D	11	A	21	C	31	D
2	A	12	A	22	C	32	B
3	D	13	C	23	C	33	A
4	C	14	B	24	C	34	D
5	A	15	C	25	B	35	D
6	B	16	D	26	D	36	A
7	C	17	D	27	A	37	C
8	A	18	A	28	A	38	C
9	C	19	B	29	D	39	A
10	D	20	D	30	A	40	C

General comments

There was a good understanding of characteristics of living organisms, the effect of temperature on enzyme activity, the human breathing system, the hormones involved in blood glucose concentration regulation, and the male reproductive system.

Candidates need to look at diagrams carefully (such as **Question 33** and **36**) and it is important for candidates to work methodically through information provided in questions (such as **Question 12** and **28**).

Comments on specific questions

Question 6

Many candidates incorrectly thought that the potato would increase in mass in the concentrated sugar solution and lose mass in distilled water.

Question 7

While most candidates knew that active transport occurs across a cell membrane, far fewer knew the direction of movement of the particles.

Question 12

Most candidates could not identify the correct order of structures in a leaf. Many thought that the epidermis is above the cuticle or that the spongy mesophyll layer is above the palisade mesophyll layer.

Question 14

Many candidates knew that lipase is made in the pancreas, but a similar number incorrectly thought that lipase is made in the gall bladder.

Question 17

Most candidates could identify renal as being the name of vessels to or from the kidney, but fewer correctly chose vein as the vessel transporting blood away from the kidney with many choosing artery.

Question 22

There was uncertainty about the structure of the human eye. Only a few candidates could identify the iris with many instead choosing the pupil or the lens.

Question 27

Many candidates could correctly identify an event in the menstrual cycle, but a similar number incorrectly thought that the uterus lining breaks down in the middle of a menstrual cycle.

Question 28

There was confusion between allele and gene with many candidates incorrectly choosing option **B**.

Question 33

Although many candidates could correctly link this description of combustion of fossil fuels to the diagram a large number thought that this could be plant respiration or decomposition. It is important that candidates read questions carefully.

Question 36

Candidates should be familiar with the terms used to describe pH such as acidic.

BIOLOGY

Paper 0610/21
Multiple Choice (Extended)

Question Number	Key
1	C
2	B
3	D
4	A
5	D
6	C
7	D
8	B
9	D
10	B

Question Number	Key
11	C
12	C
13	B
14	C
15	A
16	D
17	C
18	A
19	B
20	B

Question Number	Key
21	C
22	B
23	C
24	C
25	B
26	B
27	A
28	B
29	C
30	B

Question Number	Key
31	C
32	C
33	D
34	B
35	B
36	C
37	A
38	A
39	D
40	A

General comments

There was a good understanding of cell structure, the complementary base pairs in DNA, the structure of a synapse, phototropism, and antibiotics.

Candidates are expected to be able to recall key terms in the syllabus such as biodiversity and assimilation.

Candidates need to read all of the information provided to ensure they are answering the question asked (for example **Question 1, 36 and 40**) and interpret diagrams carefully (such as in **Question 18, 28 and 35**).

Comments on specific questions

Question 1

Many candidates could not link the need for carbon dioxide to photosynthesis and nutrition. Instead, many candidates selected respiration.

Question 7

The majority of candidates interpreted the enzyme activity graph correctly, but some thought that heat had 'killed' the enzyme.

Question 10

Many candidates thought this described absorption rather than assimilation.

Question 17

There was some confusion about the direction of water movement from the blood into the gut.

Question 18

This was a challenging question with only a few candidates selecting the correct description for what is happening at X.

Question 23

Many candidates could identify the endocrine gland and the effect of a hormone it releases, although some thought that the hormone reduces blood glucose concentration.

Question 34

Most candidates selected incorrect statements about a pyramid of energy. Many thought that they show how energy is lost.

Question 35

Although many candidates could interpret the food web correctly, some did not realise that there are four secondary consumers. Candidates should be reminded to look at the arrows showing energy transfer rather than the position of organism name on the page.

Question 36

Many candidates could interpret this investigation correctly, but some did not have a clear understanding of the different roles of the bacteria in the nitrogen cycle.

Question 38

A large number of candidates confused the description of biodiversity with ecosystem.

Question 40

Most candidates answered this correctly, but a significant number thought that the expression of the human insulin gene in bacteria was a starting point rather than the desired outcome.

BIOLOGY

Paper 0610/22
Multiple Choice (Extended)

Question Number	Key						
1	C	11	B	21	C	31	B
2	B	12	B	22	B	32	B
3	D	13	B	23	C	33	C
4	B	14	B	24	C	34	A
5	C	15	D	25	D	35	C
6	A	16	D	26	A	36	C
7	A	17	D	27	D	37	C
8	C	18	D	28	D	38	D
9	A	19	C	29	A	39	D
10	C	20	B	30	B	40	D

General comments

There was a good understanding of enzymes, leaf structure, microvilli, heart structure, and xerophytes.

Candidates should be able to recall descriptions of terms in the syllabus such as limiting factors, gravitropism, and phototropism.

Candidates need to read all of the information provided to ensure they are answering the question asked (for example **Question 7, 26 and 35**) and interpret diagrams and graphs carefully (such as **Question 9, 15 and 22**).

Comments on specific questions

Question 3

Few candidates could identify the organism as a prototist.

Question 7

Some candidates did not understand the direction of water movement in this context and so incorrectly chose option **B**.

Question 9

Many candidates incorrectly thought that light intensity was acting as a limiting factor at position 4. This highlights a common misconception when interpreting graphs showing the rate of photosynthesis to identify limiting factors.

Question 14

The majority of candidates knew that xylem vessels do not contain any mitochondria but some thought that the xylem vessels have thin walls.

Question 22

While many candidates recalled the correct type of respiration fewer selected the correct molecule with option **B** being the commonest incorrect response.

Question 26

Most candidates did not use all the information in the question. The seedling is underground and so it cannot be responding to light. This led many candidates to select option **B**.

Question 28

The majority of candidates knew that the offspring produced in asexual reproduction are genetically identical but some thought that asexual reproduction involved the fusion of gamete nuclei.

Question 31

Some candidates thought that the pedigree diagram showed a condition caused by recessive alleles. It is important to work through the diagram. If the condition was caused by recessive alleles there would not be an unaffected individual in the third generation.

Question 36

Candidates should read the question carefully. The majority of candidates could correctly identify the pyramid of energy, but fewer could identify the pyramid of numbers for this food chain.

BIOLOGY

Paper 0610/23
Multiple Choice (Extended)

Question Number	Key						
1	B	11	B	21	A	31	C
2	A	12	B	22	A	32	C
3	C	13	B	23	D	33	B
4	C	14	A	24	B	34	C
5	B	15	B	25	A	35	B
6	C	16	C	26	C	36	D
7	D	17	C	27	B	37	D
8	B	18	C	28	D	38	D
9	B	19	A	29	A	39	D
10	D	20	A	30	A	40	C

General comments

There was a good understanding of the balanced chemical equation for photosynthesis, osmosis, asexual reproduction, and the disadvantages of monocultures.

There was uncertainty about the role of vitamin C in the diet, the description of assimilation, the nitrogen cycle, and types of variation.

Candidates need to read the questions carefully to ensure they are answering the question asked (for example **Question 24, 26, 34 and 36**) and interpret diagrams carefully (such as **Question 5, 8, 26, 32 and 36**).

Comments on specific questions

Question 1

The majority of candidates did not realise that the bubbles containing oxygen meant that this diagram is showing photosynthesis rather than respiration. They then need to link this to nutrition, as photosynthesis is not a characteristic of all living things, but it is needed for plant nutrition.

Question 4

Most candidates were able to use the information in the question to deduce that having more A bases would result in a lower temperature to break the double helix into single strands but far fewer could identify which of the two DNA molecules this would be.

Question 13

Candidates were familiar with the root and shoot diagrams, but some were unclear as to the position of the xylem and phloem in the leaf.

Question 14

Many candidates did not realise that amino acids are transported in the blood. However, most understood that they are transported in the phloem.

Question 21

There was uncertainty about what combination of glucose and urea is filtered out of the blood in the glomerulus.

Question 29

Many candidates could not interpret this graph and did not appreciate that menstruation finishes once the lining starts to increase in thickness.

Question 31

Candidates were uncertain of the difference between meiosis and mitosis with similar numbers choosing each.

Question 32

Candidates should work through pedigree diagrams carefully. In this case, individuals that are heterozygous must be female.

Question 36

Many candidates selected option C, suggesting they only calculated the percentage of energy lost between producers and primary consumers rather than secondary consumers.

BIOLOGY

Paper 0610/31
Theory (Core)

Key messages

Candidates should read questions carefully, as they often contain specific information that must be used in the answer. For example, when the question asks for two lines to join boxes, only two lines should be drawn.

It is important that candidates write clearly and spell scientific terms correctly.

General comments

Many candidates were well prepared for the exam and had obviously referred to past papers and mark schemes when preparing. This type of preparation enables candidates to express themselves more clearly.

Comments on specific questions

Question 1

- (a) Most candidates gain full marks here although some named cells rather than stating the appropriate letter. Letters **A** and **D** were often swapped around.
- (b) (i) Most knew the nucleus contains genetic information and/or DNA. Although most knew the correct answer some missed marks by poorly expressing themselves or by adding incorrect information, such as the nucleus controlling what enters and leaves the cell or storing nutrients for example.
 - (ii) Most were awarded at least one mark, usually for cytoplasm or cell membrane. Incorrect answers included cell walls and chloroplasts.
- (c) Surface area and absorption were the most common correct answers. Some candidates struggled to describe the extension, and some called it a hair or cilia. Most knew it took in water and minerals but did not use the appropriate term; absorbed.
- (d) This question was not well answered. Many stated inappropriate equipment such as a ruler.

Question 2

- (a) Few candidates knew that carbon dioxide is a raw material. Most managed to name oxygen as the gas produced during photosynthesis. Although many gave the correct term, intensity was not well-known.
- (b) There was some confusion over the green pigment. Some candidates thought it produced chlorophyll, some thought it was found in chlorophyll, and some were confused between chlorophyll and chloroplasts. Many candidates could relate the presence of the green pigment as an indicator of a healthy plant and often stated that if it was absent, the plant would be brown or unhealthy. There was some imprecise scientific language regarding the green pigment. Absorbing light energy, attracting it and using it were commonly seen. Few referred to an energy transfer. Most knew of its importance in photosynthesis which helped them suggest glucose as a product.
- (c) There was some confusion between respiration and photosynthesis.

Question 3

(a) Most candidates were able to gain at least one mark on this question, although few recognised that words in the list could be used more than once even though it was stated in the question. Most gained marks for identifying the stomach as the organ where physical digestion takes place and that the pancreas secretes insulin. A few candidates referred to pancreas instead of pancreas.

(b) The majority of candidates were able to gain one of the two marks available, mainly by stating that hydrochloric acid kills microorganisms although some answers referred to the acid protecting against pathogens but not stating how. Few candidates were able to state that hydrochloric acid provides a suitable pH for enzymes. Many incorrectly referred to the acid digesting or breaking down food.

(c) Many candidates scored well on this question. They could correctly state that protease was an enzyme that digested protein into amino acids. Few candidates referred to the absorption of the amino acids. Marks were often missed because of poor expression. A few candidates referred to protease building proteins.

(d) (i) Some candidates were able to score both marks on this question. Some candidates did not describe the colour in test-tube Y as brown, instead stating red or yellow or orange. Brown was needed as a qualification to differentiate it from the results expected in a positive Benedict's reagent test. Some transposed the two answers.

(ii) Few candidates correctly identified that starch was digested by amylase. Most candidates just repeated what was in each test-tube.

Question 4

(a) A mixture of responses was seen here, with few being awarded full marks. Weaker responses gave a range of answers in the third gap, with taste, hearing and other senses stated.

(b) Many knew the role of the pupil. Most candidates realised that the amount of light had changed.

(c) (i) Candidates should be careful when labelling diagrams. 'X's were seen frequently on the fovea, lens and retina.

(ii) Many candidates were awarded full marks here. A few drew extra lines.

Question 5

(a) (i) Candidates showed the ability to interpret the table correctly and many obtained full marks. Those that did not often gave more than three ticks.

(ii) The majority of candidates were able to correctly identify osmosis, many referred to diffusion which was acceptable. Incorrect answers included absorption, transpiration and active transport.

(iii) Temperature was the commonest answer but very few went on to gain the second mark. Many referred to pH, time, mass, distance or size of the membrane.

(b) This question was generally well answered although a few incorrectly stated cell membrane or vacuole rather than cell wall.

(c) (i) Many candidates were awarded full marks here. Common errors were phagocytosis and enzyme.

(ii) Most candidates correctly answered this question. A few candidates confused a balanced diet with a healthy lifestyle and so commented on eating enough vegetables, going to bed early and having enough exercise.

Question 6

(a) (i) Few could relate the description of the blood vessels to the table. Some merely circled X, Y or Z.

(ii) The majority did not realise that the structure was a valve. Many described arteries as having a thick wall or carrying oxygenated blood and many just named a blood vessel.

- (b) Many got the heart and lungs backwards. Few named the aorta or the renal vein.
- (c) Many candidates were awarded one mark for stating urea or water. Incorrect answers included urine, faeces and semen.
- (d) Most knew at least one system and many knew two.

Question 7

- (a) (i) The majority could not convert cm to mm – answers ranged from 5000 to 50.
- (ii) A few got the types of plastic the wrong way round. Some stated that macroplastics and microplastics were present from the start, or 1960. Many got the mark for macroplastics increasing, but they found it difficult to express the change in microplastics correctly with the appropriate years. Several only got half the story and did not make relevant comparisons. Many did not make correct data quotes and gave general figures rather than accurate figures. A mark was often missed because no units, or incorrect units, were given. A common error was stating that the microplastics peaked in 2010 rather than 2000.
- (b) Most candidates gave at least one correct answer, usually about eating the plastics or getting tangled. Some described damage to the ecosystem, or toxin release rather than damage to the individual animal. Frequently the idea of blocking out sunlight leading to eutrophication was mentioned.
- (c) Most gave a correct answer, usually oil or sewage. Some incorrectly mentioned air pollution. Those that did not gain this mark gave answer such as waste, paper and metal. Others used the opportunity to write down what they had learned about pollution in general and so mentioned carbon dioxide, burning, and deforestation.

Question 8

- (a) This was a well-known topic. Occasionally a mark was missed because the candidate gave reproduction as an answer which was given in the question.
- (b) (i) Most candidates named the egg cell correctly, but ovules, ovaries and sperm were also seen. There was some confusion between the terms ovum and ovule.
- (ii) Fertilisation was sometimes described as fusion but was generally well recognised. Some responses incorrectly referred to implantation.
- (iii) Many candidates gained this mark, mostly for zygote but occasionally for fertilised egg cell. Some candidates were confused between zygote, embryo and foetus.
- (iv) All stage numbers were given as answers but stages 3 and 5 were the most common incorrect answers.
- (c) (i) Many candidates were awarded at least one mark here with **X**, placenta, less well known than **Y**, umbilical cord. **X** was often identified as nerves or blood vessels.
- (ii) Many candidates were awarded the mark, though some were too vague; such as keeping the baby safe. Also, many seem to think that the amniotic fluid provides nutrients and allows the baby to breathe.

BIOLOGY

Paper 0610/32
Theory (Core)

Key messages

Candidates should read the whole question and their answer carefully before moving on. They should ask themselves if they have answered the actual question. The information they have given may be factually correct but does not directly answer the question.

General comments

Many candidates were well prepared for the exam and had obviously referred to past papers and mark schemes when preparing. This type of preparation enables candidates to express themselves more clearly.

Comments on specific questions

Question 1

(a) (i) This question needed careful reading as it asked for the structure in a plant cell not the tissue.

(ii) Many candidates gave the structure where chlorophyll is found rather than naming chlorophyll.

(b) (i) A few candidates confused the unit for the side of a square (cm) and the area (cm²).

(ii) This question was looking for the link between the amount of light and surface area as an adaptation.

(c) (i) Candidates needed to look very carefully at the leaf cross-section and at the different tissues. The shape of the cell should help identify the cell. The end point of each line is important, as epidermis and spongy mesophyll are close together. The line for **D** labels the cuticle, not the epidermis.

(ii) Many correctly named the xylem and phloem.

(d) (i) Candidates should take notice of the description of images and diagrams. If it is a picture of a leaf, then answers about skin or blood are not suitable. Few candidates identified the guard cell.

(ii) Good attempts were made to describe how this cell adapts the leaf for photosynthesis. Some candidates confused which gases were entering or leaving the stomata.

Question 2

(a) Many candidates selected the correct conclusions.

(b) (i) Although most candidates understood that the seed needed water for germination, many thought the seed would be photosynthesising so gave carbon dioxide as a requirement. Many confused growth with germination.

(ii) Candidates predicted that the seed would still germinate, but did not notice that the higher, optimal temperature would result in faster germination. The first investigation was at 10 °C, so germination at the middle of the range of temperature should be faster.

(c) A well answered question. A few candidates gave 'photo trophic' in error, rather than phototropic. Better responses described the plant root growing into the soil or towards gravity or the centre of the

Earth. A common error was to state that plants grow on the ground which was not sufficiently clear for the mark to be awarded.

Question 3

- (a) Candidates need to be careful with their description of an acid. Whereas highly acidic is correct, high pH describes an alkali.
- (b) (i) Most candidates calculated the percentage correctly.
- (ii) It was important to select the contaminated water section for the calculation. A few candidates used their own calculation from 3(b)(i).
- (c) Candidates showed a good understanding of hygiene and prevention of infection.
- (d) Most candidates gave correct answers. Body defence means defence by the body, not how we can protect the body.
- (e) This proved to be a challenging question as most candidates did not recognise it as a bacterial cell, but as a plant cell.

Question 4

- (a) Most candidates correctly drew four straight lines.
- (b) (i) Few candidates knew which food items are high in iron.
- (ii) The question asked for the roles of blood clotting. Some candidates described how blood clots or how blood travels around the body.
- (c) Few candidates identified the aorta.

Question 5

- (a) Most candidates identified the ribs and diaphragm but not the intercostal muscle.
- (b) (i) Candidates need to be careful with naming parts, some confused bronchi with bronchioles.
- (ii) Candidates need to understand the different parts of the breathing system and how they are connected.
- (c) (i) Candidates were asked to identify the direction of carbon dioxide movement. Many candidates selected arrows for oxygen.
- (ii) A few candidates described how gases are exchanged, rather than the features of the alveoli that enable efficient gas exchange.
- (d) (i) Most knew the word equation for aerobic respiration.
- (ii) Many candidates misread the question and gave a type of cell, rather than a structure within a cell.

Question 6

- (a) This question was generally well answered. A common error was to give net rather than random movement of molecules.
- (b) (i) Many candidates gave examples of molecules rather than the three elements.
- (ii) Few candidates gave suitable molecules.
- (c) (i) Many candidates did not recognise the corresponding parts of the model cell.

(ii) This proved to be a challenging question with only a few realising that starch was a large molecule that would be too large to move through the membrane. It was important to look carefully at the diagram to find the location of the water and the mixture.

(d) Most candidates correctly identified the enzyme.

Question 7

(a) (i) The scientific name for elephant was given above the photograph. Most candidates selected the correct genus. A few gave the species name.

(ii) Most answered correctly, although a few gave features that were not visible.

(b) (i) Nearly all candidates selected the bearded pig from the food web, as they could clearly see the lines from the pig to the stick insect and the jackfruit tree.

(ii) Most candidates correctly identified a tertiary consumer.

(iii) Most candidates correctly identified a producer.

(iv) Most candidates knew that insects are arthropods.

(v) Most candidates were able to construct a food chain using organisms from the food web. Very few gave a chain using other animals.

(vi) Most answers were descriptions of a food web rather than an ecosystem.

(c) Most candidates were able to give a number of correct answers by selecting data from the graph.

(d) Many excellent answers were seen that showed a wide range of reasons why elephants become endangered.

BIOLOGY

Paper 0610/33
Theory (Core)

Key messages

Candidates should read the questions carefully, as they often contain specific information that must be used in the answer. For example, when the question asks for two lines to join boxes, only two lines should be drawn.

It is important that candidates write clearly and spell scientific terms correctly. Candidates also need to be careful about how they write their numbers.

Command words such as 'describe', 'explain', 'suggest' and 'compare' require different responses from candidates. If a description of a graph or table is required, then data should be used in the description given. Many candidates can do this effectively, although some do not include units or they give general answers rather than precise ones. An explanation requires more than just a description and candidates should be encouraged to practise the difference between 'explain' and 'describe'. Correct spelling of certain words is expected e.g., uterus, ureter, and urethra.

General comments

Many candidates were well prepared for the exam and had obviously referred to past papers and mark schemes when preparing. This type of preparation enables candidates to express themselves more clearly.

Comments on specific questions

Question 1

(a) (i) Many candidates were not accurate enough when labelling the different features, particularly the cell wall. Label lines should not have arrow heads. The plasmid was often identified incorrectly.

(ii) Many candidates did not read the question correctly and gave features of a bacterial cell e.g., cell wall rather than characteristics of living organisms shown by bacteria.

(b) (i) Most candidates answered correctly but some were confused by the first part, stating infected 'with gonorrhoea'.

(ii) Many candidates found the calculation demanding.

(c) Lots of candidates used the word immune rather than resistant.

(d) This question was generally well answered although some candidates stated 'use protection' rather than giving appropriate examples. Do not have sexual relations with lots of people was a common answer which did gain credit as it is too general.

Question 2

(a) (i) Most candidates were able to correctly identify the phloem and xylem, although a few candidates got them the wrong way round.

(ii) Very few correctly identified the cortex cells. Incorrect answers included all parts of a plant.

- (b) Very few candidates gave an answer which mentioned structure or support. Most candidates stated transport of water but many also stated transport of sucrose.
- (c) (i) Some candidates put root rather than root hair.
 - (ii) This question was generally well answered but several stated absorption rather than osmosis.
 - (iii) Most candidates knew that the structure increases the surface area.
- (d) Most candidates knew that diffusion involved substances moving down a concentration gradient but many also thought that this required energy.
- (e) Few candidates were able to name mitochondria as the site of aerobic respiration, instead stating various plant structures.

Question 3

- (a) (i) Few candidates were able to name the adrenal gland, most offering adrenaline or kidney instead. Many knew that the testes secrete testosterone.
 - (ii) Very few candidates were able to describe a hormone. Those that did know it was a chemical and was transported by the blood were often confused about where it acts.
 - (iii) Most knew that hormones act more slowly than the nervous system.
- (b) Most gained all four marks, although some were confused about the diameter of the pupil increasing to let in more light.

Question 4

- (a) Many candidates were not able to give the word equation for photosynthesis. Some gave the respiration equation. A few candidates tried to write a symbol equation. If this was completely correct, marks were awarded.
- (b) (i) (ii) Many candidates were able to name the pigment but not the structure. Other candidates got them the wrong way round.
- (c) (i) Very few candidates were awarded full marks. It was important to read the question carefully as a whole number was asked for.
 - (ii) This question was a describe and explain so it is important that both parts of the question are answered in order to gain full marks. It was quite well answered with most candidates able to describe the graph, although some did not recognise that this question was about photosynthesis.

Question 5

- (a) (i) Most candidates correctly identified the ovary. Fewer could identify the sites of fertilisation and implantation.
 - (ii) Many candidates could not identify structure **N** as the cervix. Most correctly identified structure **L** as the uterus.
- (b) Candidates found this a demanding question. Some candidates suggested it was large, had a large surface area or it was stationary. Some gave the features of a sperm.

Question 6

- (a) This question on variation was generally well answered.
- (b) (i) Candidates found this a demanding question. Many just repeated the first stage (that was given in the question). Some candidates clearly did not understand the term drought tolerance, others suggested giving the plants plenty of water. The question needed a description of selective breeding.

- (ii) Few candidates correctly stated selective breeding, many saying mutation or adaptation.
- (c) (i) Most answered correctly although some gave both parts of the name or just the species name.
- (ii) Many were awarded full marks on this question. A common mistake was to identify the yellow-spotted flower plant as Bb but then go on to complete the Punnet square correctly.

Question 7

- (a) A few candidates were able to identify the correct pyramids, but most found this challenging.
- (b) (i) Some candidates could identify the correct answer.
- (ii),(iii) The concept of trophic levels was not well understood with very few able to interpret the food web correctly.
- (c) Only a few correct responses were seen.
- (d) Most could give at least one way in which endangered species could be conserved, although most thought this question was still about the food web earlier in the question.
- (e) Many candidates gave answers that were too vague and could not be credited.

BIOLOGY

Paper 0610/41
Theory (Extended)

Key messages

Candidates should read all stimulus material carefully and follow all the instructions contained in the question. Vital information was present in **Questions 1(a)(ii), 1(b)(ii), 2(a), and 5(a)**, and this was often missed by some candidates.

It would be beneficial for candidates to practice the spelling of keywords, particularly in cases where they could be confused with another keyword. The spelling of ureter was important in **Question 4(c)**, and the spelling of phototropism was important in **Question 6(a)(iii)**.

Learning definitions and descriptions of terms in the syllabus is important for answering questions directly as well as providing scaffolding for longer prose questions. Knowing the meaning of the term population was important for **Question 1(b)(i)** and the meaning of the term excretion for **Question 4(a)**.

General comments

A high standard of scientific knowledge and understanding was evident, with many candidates providing detailed and accurate responses. On occasion, some responses were lacking in detail. Candidates can use the mark allocation of the question as a guide to how many specific points they need to make in their responses.

While many candidates had a broad knowledge of the syllabus, it was evident that some areas of the syllabus were better known than others. For general guidance, the syllabus can be used as a guide to what content needs to be covered and can provide an excellent revision tool for candidates.

Comments on specific questions

Question 1

(a) (i) The correct response of Sun was frequently seen. Alternatives including sunlight and light were also accepted. Inaccurate responses such as photosynthesis were not credited.

(ii) Some candidates calculated the percentage of energy lost rather than the percentage of energy transferred. The question also asked candidates to express their answer to one significant figure. A few candidates incorrectly rounded their answer.

(iii) The reasons for energy loss between the trophic levels were generally well known. A common misconception was to state that energy is used in respiration rather than released by respiration.

(iv) This question was demanding. Some candidates were able to suggest that pyramids of energy take into account the different sizes of organisms, or that it is a more accurate representation of energy transfer. Few candidates suggested that pyramids of energy take into account the rate of reproduction, life spans or time.

(b) (i) The meaning of the term population was generally well known. Alternative words were accepted for area.

(ii) A common issue for some candidates was that they only described and explained the initial rise of the graph and therefore were only able to access some of the available marks. Some candidates also attempted to describe the whole graph, which was unnecessary, although these candidates

were not penalised for this. The best responses described the change in the rate of increase of the population.

Question 2

(a) This question asked for the differences in distribution of rod and cone cells and not the number. Any references to numerical values were ignored. Candidates were generally able to identify the peak of cone cells at the fovea and the absence of rod cells. Identifying the peak of rod cells was more challenging. Some candidates were able to describe the uniform distribution of cone cells outside the fovea.

(b) Some candidates suggested that nocturnal animals have more receptor cells in general. However, this question required more detail and answers needed to specifically explain in terms of rod cells or cone cells.

(c) (i) Most candidates gave the correct name for this reflex. Responses such as reflex action, involuntary action, or iris reflex were not credited.

(ii) Effectors are always muscles or glands. In this case, the effector was the circular muscle. Incorrect responses included radial muscle and ciliary muscle. Very occasionally, candidates omitted the term muscle, which was necessary to be creditworthy.

(iii) The correct response of antagonistic was commonly seen. Involuntary was also an acceptable alternative.

(d) (i) The parts involved when an impulse is transmitted across a synapse were generally completed well. A common misconception was to refer to the receptor protein as a receptor cell.

(ii) The process of diffusion was commonly seen, as was the process of movement from an area of higher concentration to an area of lower concentration. Very occasionally, incorrect processes were seen, such as osmosis and active transport.

Question 3

(a) (i) There was some confusion with identifying structure X. Incorrect responses included style and pollen tube.

(ii) A number of misconceptions and inaccuracies were evident. A common misconception was that it is the pollen grain that travels down the pollen tube. Another misconception is that the name of the structures in the ovary are ova rather than ovules. The best responses described the movement of the pollen nucleus and the subsequent fusion with the nucleus of the ovule.

(b) (i) Some candidates confused the effects of self-pollination with the reasons why it may happen. Other candidates suggested the advantages of self-pollination compared to cross-pollination, which is slightly different to the question asked. Candidates should be reminded to read questions carefully and answer the question that is asked.

(ii) This question was generally answered well, with many candidates being able to suggest a number of consequences of using only self-pollination.

(c) Several sources of genetic variation in populations were stated. Vague responses such as sexual reproduction were not credited.

(d) The roles of mitosis were generally described more successfully than the actual process. Few candidates referred to the separation of chromosomes or nuclear division.

(e) The correct response of stem cells was commonly seen.

Question 4

(a) Descriptions of key terms are included in the syllabus and candidates should use them as a guide to their learning. Some candidates referred vaguely to waste products rather than metabolic waste

products. Some candidates referred to toxic products in excess, which is inaccurate as all toxic material is in excess by definition.

- (b) The correct response of carbon dioxide was commonly seen. Water vapour was also an acceptable response.
- (c) The cortex and medulla were frequently confused. The spelling of ureter was important due to the possible confusion with urethra.
- (d) There were some excellent responses seen, with the names of the fluids identified and the differences in their composition described and explained. Occasionally, it was clear that some candidates confused urea and urine.
- (e) Some candidates were able to give a correct response of deamination. Fewer were able to state or describe assimilation or protein synthesis.

Question 5

- (a) (i) Many suitable responses were seen. Occasionally, candidates were too vague, referring to ears unqualified rather than external ears. Features that were possessed by other groups including tail, and limbs were not credited.
- (ii) Candidates should have read all the information given to them in the stimulus material carefully. The groups with the most common recent ancestor would be the groups that split the latest in time, which would be the apes and rodents. Several candidates gave sharks and bony fish due to their physical similarities, and others gave crocodiles and birds.
- (iii) There was some confusion evident amongst candidates. Some tried to give two groups for each line. A small number of candidates mistakenly reversed the answers, giving sharks as the most similar and birds as the least similar.

- (b) The descriptions of DNA were generally accurate and detailed, with many candidates giving creditworthy responses.
- (c) This was a demanding question. There was some confusion between the formation of mRNA and protein synthesis. Many candidates were able to describe simply that proteins or protein production was responsible for different cell functions. Only the more able candidates were able to refer to sequences of amino acids and their effect on protein shape.

Question 6

- (a) (i) It was important for candidates to read the stimulus material carefully to identify that this investigation was conducted with light from every direction, and so the direction of light was not a factor in the investigation. Candidates that recognised the effect was due to gravity generally answered this question well.
- (ii) Most candidates identified that roots would grow down towards gravity.
- (iii) Most candidates were able to name the response as phototropism. Spelling of phototropism was important, and candidates should be reminded to spell keywords correctly.

- (b) There were some excellent responses seen with detailed and accurate descriptions. Very occasionally, candidates confused turgid and flaccid. Some candidates included the description of osmosis, which although correct, was irrelevant to this question.

BIOLOGY

Paper 0610/42
Theory (Extended)

Key messages

Candidates need to read questions and the additional information on diagrams and keys, carefully. For example, they should check how many significant figures to use in their answer, or the suggested key to use for alleles in a genetic cross.

Candidates need to read through their answers carefully and in particular, check for contradictions.

Candidates need to gain confidence when using the correct biological terminology so that they can add detail to their answers.

Candidates are reminded to show all their working in calculations.

General comments

There was generally good subject knowledge on the human gas exchange system, **Question 1(a)**, the immune system, **Question 2**, and genetic modification, **Question 3(b)**. However, in some cases key terminology was used incorrectly or the sequence of events was confused.

Misreading of command words, instructions or information in questions led some candidates to give incorrect answers. For example, many candidates gave explanations, rather than descriptions in their answers to **Question 4(b)** and **Question 6(a)**. Other candidates did not give answers to the correct numbers of significant figures, **Question 3(a)**, or gave the name of a disease rather than a pathogen, **Question 2(b)(i)**. It was also not uncommon to find long answer responses with contradictions suggesting that these candidates had not reread their answers. Other candidates seemed to be recalling the answers to questions in previous papers, rather than using the information provided in this question paper. This was particularly noticeable in the genetic cross, **Question 1(c)**.

Question 1

(a) (i) Most candidates knew the names of the three labelled structures in the human gas exchange system. Although phonetic spellings were credited, some words were illegible or a hybrid of two terms and could not be accepted. The most common error was to label the bronchioles as the alveoli.

(ii) Many candidates recalled that the cartilage in the gas exchange system is to keep the airway open. However, some candidates gave vague answers about support or protection without providing sufficient context.

(iii) Inspiration was well described by most candidates but only the most comprehensive answers mentioned that the air drawn in equalises the air pressure between the lungs and the atmosphere. Almost all candidates knew the mechanisms that increase the volume of the thorax and decrease the pressure although there were some responses where it was suggested that the change in volume and pressure of the thorax caused the change in the position of the ribs and diaphragm. It was also quite common to see contradictory statements such as the diaphragm contracts and rises or vague answers about intercostal muscles without stipulating that it was the external intercostal muscles that contract.

(b) (i) The goblet cells and ciliated epithelial cells were the most common cell types described and explained. A few candidates confused the terms ciliated and ciliary, and many described the cilia as moving pathogens and particles directly, without any reference to the idea that they would be in the

mucus. Others described the movement of the cilia but did not mention the direction of travel or were vague about the specific roles of the goblet cells and the ciliated epithelial cells. Other candidates mentioned lymphocytes and phagocytes but then gave vague answers about the function of white blood cells.

(ii) Almost all candidates realised that the thicker and stickier mucus would block the airway, though many candidates gave vague responses about difficulty in breathing or affecting the airway. Those candidates who went on to explain the impact on the ability of the person to do exercise often gained full credit. The most common points were to describe that less oxygen would be delivered and that this would result in less aerobic respiration. Very few candidates explained the reason for reduced gas exchange.

(c) Many candidates knew the genotypes for heterozygous parents and completed the genetic diagram to predict the probability of them having a child with cystic fibrosis. Some candidates either did not know what symbols to use for the gametes or switched to a different set of symbols halfway through their answer. This meant that these candidates did not gain full credit. Another common error was to wrongly attribute the alleles to the X chromosome and predict the outcome from a sex-linked genotype. This error was seen frequently and suggests that these candidates had not read the question carefully.

Question 2

(a) Almost all candidates correctly identified the red blood cell in the photomicrograph and many also correctly stated its function. A few candidates described that it would contain haemoglobin or was biconcave in shape, rather than giving its function. Although most candidates could correctly link the lymphocyte and phagocyte to their functions, many switched the correct label letter for these two cells. A few candidates labelled them as white blood cells, which was too vague. A number of candidates thought that label H was cytoplasm, rather than plasma and many descriptions of it being a fluid were seen, rather than a statement about its function. Almost all candidates knew the function of platelets in blood clotting.

(b) (i) Many candidates stated that HIV is transmitted with direct contact with blood. It was rare to see candidates state AIDS, without qualifying that it was the virus that is transmitted. A few candidates named other correct blood-borne pathogens such as the hepatitis virus, and even though this is knowledge beyond the syllabus, these were also credited. Vague responses such as virus or bacteria were not credited.

(ii) The full range of possible ways in which pathogens can be transmitted incorrectly were seen. The most common errors were to describe direct touching between individuals or to mention the use of a utensil without making it clear that it was contaminated or had been previously used by someone else.

(c) The role of antibodies was well known by many candidates. A common error was to mix up the terms antibody and antigen. A misconception was to describe the antibodies as engulfing pathogens, rather than marking the pathogens for engulfing by phagocytes.

(d) Many candidates knew one or two differences between active and passive immunity, but few gave three differences. A common vague statement was to state that passive immunity was passed from a mother to an infant through breastmilk without any mention that it is antibodies that are transferred. A few candidates confused the body defences with passive immunity.

Question 3

(a) Almost all candidates read the correct values from the graph, and many went on to do the correct calculation and give their answer to two significant figures. Common errors were to use the wrong denominator or to round the calculated value incorrectly.

(b) (i) Many candidates knew that DNA is the biological molecule where genes are found, but common incorrect answers were nucleus, chromosome, proteins and amino acids.

(ii) Only those candidates who read the question carefully realised that this was not about selective breeding, but rather a process to check the inheritance of the gene, the quality and safety of the crop,

and to produce enough GM plants. Many candidates incorrectly described the genetic modification as a mutation.

(iii) Many very comprehensive descriptions of how a gene can be transferred from one organism to another were seen. Even those candidates who were less sure of some of the details could describe one or two steps in the process, but these were only credited if they were written in the correct context. For example, some candidates described the sticky ends on proteins, or the insertion of one plasmid into another plasmid. Common errors were to mix up the two enzymes, or to describe cutting the gene into pieces, rather than cutting the whole gene from a piece of DNA.

(c) (i) Almost all candidates gave sensible suggestions of how to prevent pollination between a GM crop and wild plants. Some impractical and destructive suggestions such as killing all the wild plants were seen but not credited. A few candidates described placing a covering over the stigma, rather than the anther.

(ii) Increasing yield was the most common advantage of GM crops that was given. Many candidates also knew other examples such as improving the nutritional value or conferring resistance to factors other than insects. A common error was to describe this as an immunity rather than a resistance.

Question 4

(a) Many candidates knew part of the description of an adaptive feature, but few very know all the correct terms. The most well-known term was survive, but many of these candidates did not recall the idea that they must also be able to reproduce and hence did not gain credit.

(b) Many candidates gave clear descriptions of the features of the marram grass leaf that showed it was a xerophytic plant. Common correct answers included a thick cuticle and the presence of hairs. Some candidates incorrectly identified these as root hair cells or gave features that were not specific to the leaf in the photomicrograph. Others did use the image but incorrectly thought that the rolled inner surface of the leaf made a large air space.

(c) (i) Most could convert the measurement from micrometres to millimetres. It was quite common for the answer to be expressed in standard form, although this was not a requirement for the mark. A few candidates misread the instruction and rounded the number rather than converting it to the new units.

(ii) Almost all candidates knew that cellulose builds cell walls. The most common incorrect answers were starch, glucose and lignin.

(iii) Although most candidates did give correct features of xerophytic stems, it was not uncommon for candidates to describe features of leaves or roots instead. Other candidates gave features to prevent herbivory, such as spikes, rather than adaptations for dry environments.

(d) Most candidates could correctly describe the two root systems, and many also gave a suggestion about how they were adapted for living in dry environments. A few candidates incorrectly thought that the roots extending close to the surface were not adapted to dry environments. A few candidates focused on the absorption of nutrients or anchorage rather than the uptake of water.

Question 5

(a) (i) Many candidates knew that nitrate ions were transported into the root hair cell by active transport, with only a few suggesting diffusion or osmosis. Candidates often correctly referred to the difference in concentration outside and inside the cell although a small number of candidates then went on to contradict themselves by stating the ion moved down a concentration gradient. A few candidates also confused the mitochondria for chloroplasts, but those that did correctly identify them often went on to explain their role in providing energy.

(ii) Many candidates knew one of the methods by which nitrogen is fixed, but only a few candidates gave two correct ways. Some candidates incorrectly suggested that nitrifying bacteria are involved or mentioned root nodules without any reference to bacteria.

(b) Almost all candidates knew that water moves by osmosis into the root hair cells.

(c) Many candidates correctly described some differences and similarities between a root hair cell and a bacterial cell, and it was rare to see answers that considered only similarities or only differences. Very few candidates mentioned that cytoplasm is found in both cell types, but many knew that only root hair cells have a nucleus. Common incorrect comparisons included suggestions that only root hair cells have cell walls, or that both cell types contain vacuoles or other membrane-bound organelles. A few candidates contradicted themselves by giving the same cell structure as both a similarity and a difference.

Question 6

(a) There were some very good descriptions of the results of the investigation of how much jelly was digested by two enzymes at different pH values. Many candidates identified the two peaks and also referred to the pH values where no jelly was digested. Most candidates who quoted appropriate data points included the units, but some candidates did not read the question carefully and mentioned optimum temperatures or offered explanations even though this was not required.

(b) Many candidates looked at the correct trend line and stated that there was no enzyme activity. However, some candidates did not refer to denaturation caused by the low pH, often opting to explain other parts of the graph, or incorrectly discussing temperature. Other candidates misread the key or the question and referred to enzyme **L** instead of enzyme **M**. Others introduced contradictions into their answers by using incorrect pH values.

(c) Most candidates correctly identified enzyme **L** as pepsin and also knew that it is located in the stomach. Some candidates suggested that the enzyme was a protease but did not qualify their answer to state which protease enzyme. The most common incorrect answer was trypsin, or a misspelt word that was a mix between 'trypsin' and 'pepsin'.

BIOLOGY

**Paper 0610/43
Theory (Extended)**

Key messages

Candidates should know that command words such as 'state', 'describe', 'explain', 'suggest' and 'outline' require different types of responses. Candidates should be encouraged to identify the differences in the requirements for each command word and in particular the difference between questions that ask for descriptions and explanations.

General comments

Many candidates were well prepared for the exam and some excellent responses were seen.

Rounding to a certain number of significant figures appears to be less well understood than rounding to a certain number of decimal places. Both processes should be understood.

Comments on specific questions

Question 1

(a) Most candidates were able to link some of the structures in the diagram to their name and function, although few gained all the available marks. The most common mistake was to describe the role of the anus as excretion rather than egestion and that waste, which is too vague, was removed instead of undigested food or faeces. Some identified the gall bladder as producing bile instead of storing bile. The role of the oesophagus was well known.

(b) (i) Many candidates understood the role of chemical digestion in producing small soluble molecules from large insoluble molecules but fewer went on to state that the purpose of this is to enable the absorption of the small molecules. Some answers included examples of chemical digestion rather than describing its role, indicating how important it is to read the question carefully.

(ii) Some candidates knew that glucose is produced from the breakdown of maltose, although a wide range of incorrect responses were seen.

(iii) Very few candidates could describe in sufficient detail where maltase acts. Many described named parts of the small intestine or in the villi instead of the epithelial cells.

(iv) Most candidates correctly described the effect of the acidic pH in the stomach on amylase. However, very few mentioned that the low pH was caused by hydrochloric acid or gastric juices. Candidates should use scientific language such as denature and active site. Strong responses stated that hydrochloric acid produces a low pH in the stomach leading to the denaturing of the amylase by changing the shape of the active site so that it is no longer complementary to the substrate. This was followed by bile neutralising the acidic mixture to provide a suitable pH for the amylase to work in the small intestine. Some candidates did not state that it is the shape of the active site that changes, or that bile is an alkaline mixture.

Question 2

(a) Most candidates could state the features of the alveoli that make it a good gas exchange system although some had difficulty describing how the circulatory system was involved with answers such as 'next to blood' or 'has blood capillaries'.

(b) (i) Some candidates could identify the muscles that contract during inspiration. This question asked for the letters in the diagram that identify the muscles so naming the muscles was not credited.

(ii) The function of cartilage in the breathing system was well known, although some candidates stated it supported or protected the trachea without qualifying their answer.

(c) (i) Most candidates could state the balanced chemical equation for aerobic respiration, although some mixed up the reactants and products and others did not balance the equation correctly. Some incorrectly gave the equation for photosynthesis.

(c) (ii) Few candidates were able to describe the mechanism linking increased physical activity with the increased rate and depth of breathing, with many just stating that the breathing rate increased. Many described the oxygen debt that is built up instead. Strong responses described the increase in carbon dioxide concentration being detected by the brain, but others suggested more oxygen was needed for respiration to release energy.

Question 3

(a) Most candidates were able to fill in some of the gaps correctly. There was some confusion on the roles of the organs involved with the liver often being given instead of the pancreas. Some incorrectly thought that the control of glucose concentration is an example of diabetes. The spelling of glycogen was important.

(b) The treatment of type 1 diabetes was not well understood. Some candidates were able to gain credit for describing insulin injections and some for monitoring blood glucose concentrations but not the blood sugar concentrations. Simple answers about healthy diet and exercise did not include the detail required.

(c) The calculation of percentage change was done well by many candidates. Common errors included reading the values from the graph incorrectly and rounding the answer incorrectly.

(d) Few candidates could link the effect of adrenaline on blood glucose to the fight-or-flight reaction in sufficient detail to gain credit. Very few recognised that adrenaline causes the breakdown of glycogen to glucose but more stated that there was an increase in glucose concentration. The idea of using this glucose in respiration was not fully explained as the releasing (not the producing) of energy and its use in muscle contraction.

Question 4

(a) (i) Many candidates correctly identified the tissues in the photomicrograph. It was important to give the full name of the palisade mesophyll layer to gain the first mark and not just state palisade on its own.

(ii) Many candidates could identify the area as an air space used to ensure the leaf is buoyant. Some confused the air spaces with the xylem and phloem. The question asked for candidates to describe two functions. Candidates writing one-word answers such as photosynthesis or respiration without fully explaining that air spaces allow diffusion of gases for these processes did not answer the question fully.

(iii) Most candidates could identify the green pigment but far fewer could describe its function in sufficient detail. Many stated it was used to trap light instead of light energy and others described light in terms of sunlight or the Sun which was not acceptable. The idea of chlorophyll being used for photosynthesis was not a detailed enough answer. Many incorrectly thought that its function is to provide the green colour.

(iv) Some could describe how a very thin cuticle is an adaptation for water lilies because as they live in water, they do not need to prevent water loss. Some also recognised that it would allow more light to go into the leaf for photosynthesis but did not say it was into the palisade mesophyll layer.

(b) (i) Very few candidates could convert the stomatal density per mm^2 to the correct stomatal density per cm^2 . If the area increases, then the number of items in that area will increase too – not decrease as was given in many answers.

- (ii) Many candidates did not realise that oxygen and carbon dioxide can diffuse from the water into aquatic plants. Many candidates recognised that the pondweed had no stomata but failed to relate this to having no access to air.
- (c) (i) Most candidates could describe a feature of monocotyledonous plants such as narrow strap-like leaves or parallel veins.
- (ii) This was a challenging question and only a few candidates could link the low oxygen concentrations in waterlogged soil to the function of root hair cells absorbing nitrate ions from the soil to form amino acids. Many candidates approached this by explaining how oxygen was used to make proteins and did not relate the lack of oxygen to reducing respiration and because of less nitrate ions there were less amino acids for protein synthesis.

Question 5

- (a) (i) Most candidates could state that antibiotics are used to kill bacteria.
- (ii) Most candidates described how antibiotics should only be used when necessary and that the full course should be completed to reduce the likelihood of resistant bacteria developing.
- (b) (i) Most candidates correctly identified *Penicillium* as the genus.
- (ii) Most candidates could use the information to place *Penicillium chrysogenum* in the fungi kingdom.
- (c) (i) A range of correct answers were seen here including insulin, mycoprotein and alcohol products.
- (ii) Many candidates could state that gas X is oxygen. A few candidates incorrectly stated carbon dioxide.
- (iii) Most candidates could describe some conditions that are controlled in a fermenter. Candidates should be reminded that thermometers can be used to monitor the temperature but do not control it. Good answers described monitoring the temperature using the thermometer and then controlling the temperature using the water jacket, controlling the pH by using a buffer and the addition of nutrients such as amino acids and carbohydrates. The use of the stirrer was not understood in terms of providing equal distribution.
- (d) The majority of candidates correctly identified yeast as the organism involved in both bread-making and biofuel production.

Question 6

- (a) (i) Most candidates correctly described the decrease in forested area. A few candidates also described the change in the pattern of the forested areas as an increase in fragmentation and a loss of forest from the coastal areas.
- (ii) Most candidates could identify reasons for the change in land use seen on the island. Some just stated deforestation without explaining the reason for it so did not gain a mark.
- (b) Many candidates could name the three processes labelled in the carbon cycle. Candidates should use the term combustion instead of burning.
- (c) (i) Very few candidates explained how deforestation can lead to an increase in global temperatures. Many candidates only gave a partial answer, either stating that there would be more carbon dioxide in the atmosphere, instead of less carbon dioxide was removed from the atmosphere and did not say this was because of a decrease in photosynthesis. Others simply stated that there would be less photosynthesis. The idea of the carbon dioxide was often stated as trapping and reflecting heat instead of trapping infra-red radiation. Some who realised it involved radiation did not state it was infra-red.
- (ii) Most candidates described the undesirable effects of deforestation well. Many answers included loss of habitats leading to extinction and reducing biodiversity. The idea of soil erosion from disturbing the tree roots was often seen with this also leading to flooding or landslides.

BIOLOGY

Paper 0610/51
Practical Test

Key messages

Candidates should ensure that they read the questions carefully before starting to answer. This is particularly important for any planning exercise that is required. Identification of the dependent and independent variables is vital before a plan is completed. Controlled variables must also be considered and included in a plan.

When asked about safety considerations, candidates should identify a risk but also identify a method of reducing that risk.

Mathematical calculations form an important part of the practical assessment. It is essential that candidates check all of their working carefully and take time to consider whether the resulting answer is realistic.

It is essential that candidates take time to ensure that their written work is legible. This includes the avoidance of 'overwriting' when mistakes are made or even writing in pencil and then overwriting in pen. When mistakes are made, they should be crossed out completely and the alternative answer written in a suitable clear space.

General comments

Candidates performed well on the paper with some good clear and concise answers. The production of good results for the diffusion practical and thorough answers when planning the osmosis investigation indicate a good level of practical skills for these candidates. The plotting of graphs and calculation of size also showed a good level of understanding.

When asked to draw a biological specimen it is important that candidates take their time and observe all features fully. Observation skills are an important aspect of practical biology.

Comments on specific questions

Question 1

(a) (i) Candidates were asked to investigate diffusion in agar blocks by putting them into different concentrations of acid. Most candidates were clearly able to perform the dilution of the hydrochloric acid and cut the blocks into suitable sizes. The results obtained were of a good standard, within the range expected for this investigation, and followed the expected trend for the concentrations of acid used. The most common error was giving the heading for the acid concentration as simply 'test-tube' rather than stating the actual concentration of acid and labelling it as such. Ideally a table should give sufficient information to understand the nature of the investigation. Another error was to record the time taken in minutes rather than in seconds. It is important that candidates read the instructions carefully before filling in their table of results.

(ii) Although a large number of candidates were able to state a valid conclusion for their results, many simply referred to the time taken rather than mentioning anything to do with diffusion itself. To construct a valid conclusion, candidates should go back to the stem of the question and use the underlying science behind any dependent variable measurement.

(iii) The majority of candidates were able to identify the independent and dependent variables, although often the rate of diffusion was stated instead of the time taken. Candidates must state the variable that was measured, rather than a calculated value.

(iv) The identification of sources of error in this investigation was answered very well, possibly due to actual difficulties encountered while carrying out the procedure. Difficulties caused by human error should be avoided; for example, incorrect reading of the stop-watch or other mistakes made while measuring. Sufficient detail should also be included, stating exactly what the source of error is rather than just saying 'the cubes' for example. Some candidates found it difficult to express the unevenness of the cubes as a potential source of error.

(v) Most could identify two safety hazards, but lack of detail was also an issue. Stating that the solutions were a hazard was insufficient as hydrochloric acid had to be identified. Some candidates described methods of reducing the hazard rather than the hazard itself, such as wearing gloves but not saying why this was being done. A few candidates only identified one hazard.

(b) For the planning question, candidates were asked to plan an investigation into the effect of temperature on osmosis in potato tissue. This is a familiar scenario, and most candidates did well on this question. It is important that candidates consider and describe suitable methods – such as drying the potato before measuring mass or submerging the tissue in a named solution. Safety aspects were described in suitable depth, but they must be relevant to the investigation, and ideally an explanation for any precautions should be included.

Question 2

(a) (i) The majority of candidates were able to identify the colour of DCPIP solution.

(ii) Many candidates found this question demanding and confused the concentration of vitamin C (which was the independent variable) with a controlled variable. Another common error was the lack of precision when describing the DCPIP solution. Stating that the 'amount' of DCPIP remained constant, could mean volume or concentration. Both of these needed to be described for both available marks.

(b) (i) Most candidates did well on this graph question. Ideally points should be plotted as small, neat crosses. The line must either be a line of best fit or a line that joins each plotted point. Extrapolation of the line was occasionally seen as well as lines that were feathery or far too thick. Care should also be given to ensure that the scale is linear and that plotted points cover more than half of the grid.

(ii) This question was answered well with most candidates using their graph to estimate the vitamin C concentration of the orange juice when 1.2 cm^3 of orange juice was used. The majority of candidates followed the instructions and indicated on their graph how they obtained their estimate.

(c) (i) Although many candidates stated a correct conclusion, a significant number tried to use each column to describe the trend, comparing sample 1 with sample 2 and sample 3.

(ii) When asked to define an anomalous result, most candidates were able to refer to a point not fitting in with the trend in the data. Simply describing an anomaly as 'different' was not sufficient as all of the results were different from one another to some extent. Candidates need to get across the idea of the anomaly being so different that it does not fit a trend in the data.

(iii) Most candidates circled the value of 96, presumably because it looks different from 104 and 170. It is important to look carefully at the actual values and work out the numerical difference between them.

(iv) Candidates were asked to calculate the percentage change in the vitamin C concentration. Many could do the calculation, but some candidates mixed up the values for the denominator. Candidates needed to show that they knew this was a percentage decrease by including a negative sign with their answer.

(d) (i) The drawing of a section through a strawberry was very well done with some good clear diagrams. The size was usually adequate, and all lines tended to be thin and unbroken. A few candidates did not include enough detail to gain both marks, particularly the detail of the inner section of the fruit. Some candidates incorrectly added shading or stippling.

(ii) The calculation of the actual diameter of the strawberry was particularly well done with full marks obtained by many candidates. The only issue was the distinction between significant figures and decimal places.

(e) Although most candidates were able to state that Benedict's reagent is used to test for reducing sugars, far fewer remembered that heating is required. Simply stating that the test-tube was placed in a water-bath is insufficient.

BIOLOGY

Paper 0610/52
Practical Test

Key messages

Candidates should ensure that the workings are shown in calculations, and that they are clear and legible. If the calculation is incorrect, it is often possible to award some marks for the workings.

When drawing conclusions from an investigation, candidates should reread the aim of the investigation. They should then give a conclusion linking the independent variable to the dependent variable.

When drawing graphs, candidates should not extrapolate their lines past the plotted data points.

General comments

Many candidates demonstrated good skills throughout the paper, including table drawing, graph drawing and biological specimen drawing.

Comments on specific questions

Question 1

(a) (i) Most candidates gained one mark for the correct response of 25 for both the volume of salt solution and the volume of water.

(ii) Many candidates were able to draw a suitable table that accurately represented the data they collected. The most common error was not including units in the heading. Candidates are reminded not to include units in the body of the table.

(iii) The majority of candidates were able to correctly calculate the change in length of potato in different solutions.

(iv) In order to be awarded the mark, candidates needed to give a suitable conclusion based on the results. Answers that included the link between salt concentration and osmosis were credited. The most common incorrect answer was to restate the results rather than giving a conclusion.

(v) Many candidates were able to state the dependent variable. Some candidates gave vague answers, such as osmosis, which was not credited.

(vi) Most candidates did not gain the mark for this question. The most common correct response was for the idea that the measuring cylinder was contaminated as it was used for both solutions. Many candidates recognised that the same measuring cylinder was used, but did not link this to the idea of contamination.

(vii) There was a wide array of answers provided for a safety precaution used when cutting the potato. Using gloves to cut the potato or cutting it carefully were not accepted responses. The most creditworthy responses were cutting away from the body or using a flat/hard surface.

(b) Many candidates were able to identify that iodine solution was used to test for starch and that a positive test would turn blue-black. A few candidates incorrectly described the test for protein.

(c) (i) Most candidates successfully produced a drawing of the leaf which was of suitable size with a double-lined midrib. However, some candidates had a broken outline, or used a ruler to draw the midrib, or used shading. Some candidates did not include the characteristic bulges at the bottom of the leaf. In a few cases the drawing extended into the printed text which was not accepted.

(ii) Many candidates gained full marks for this calculation. Common errors were either including units i.e. mm in the magnification or not expressing their answer to two significant figures.

(iii) Most candidates were able to identify a suitable similarity between the leaves. Providing a difference proved more challenging. Simply stating that one was smoother was not sufficient. Those candidates that made two valid comparisons, such as the potato had more veins and the tomato had fewer veins were credited.

Question 2

(a) (i) In this question, candidates were asked how to maintain the temperature of the mixture. In order to gain credit, they must have made it clear how the temperature would be controlled, such as using a thermostatically controlled water-bath. The use of a water-bath with no further qualification was not sufficient for the marking point.

(ii) Almost all candidates were able to correctly identify at least one of the variables that would need to be kept constant during the experiment. The most commonly awarded responses included the timing of the experiment or the volume of the enzyme. The type of apple or simply the amount of enzyme were not credit worthy responses.

(b) (i) Many candidates demonstrated that they could accurately draw a suitable line graph. Some did not choose a scale that allowed their plots to take up at least 50% of the grid. Candidates are reminded that drawn lines need to be thin and clear, without extrapolation.

(ii) This question required candidates to use their graph to estimate the volume of apple juice produced with a 0.5% pectinase solution. They were asked to show their workings on the graph. While many were able to accurately determine this value, they did not show on their graph how they determined their answer.

(iii) Only a small number of candidates gained this mark. It was important that candidates described the entire trend in the data not just refer to the initial increase, few mentioned the plateau.

(iv) This question proved demanding for most candidates. A key concept tested here was the effect of the interval size of the independent variable. Many candidates found it difficult to grasp that when intervals are too wide, the actual optimum enzyme concentration may be missed. Most candidates only mentioned using concentrations above or below 0.8% and missed stating the need for concentrations at smaller intervals around 0.8%. Weaker responses referred to changing controlled variables, e.g., temperature and pH, or repeating the experiment multiple times.

(v) Many candidates were able to draw the apparatus needed to filter and measure the solution. It is important that candidates recognise that a beaker is not a suitable measuring device.

Question 3

This question required candidates to apply their knowledge of photosynthesis experiments to measure the relative concentration of carbon dioxide using hydrogencarbonate indicator. Stronger responses described using at least three different light intensities, often by using a different distance of a lamp from the plant. Most candidates were able to name variables that would have to be kept constant, such as temperature, volume of water and volume of hydrogencarbonate indicator. Fewer candidates were able to describe how to measure the dependent variable by observing the colour of the hydrogencarbonate indicator after a set period of time. Some candidates included how to make the data more reliable by repeating it at least two more times with a smaller number accurately discussing the use of goggles or gloves for safety.

BIOLOGY

Paper 0610/53
Practical Test

Key messages

Candidates should ensure that they read the questions carefully before starting to answer. This is particularly important for any planning exercise that is required. Identification of the dependent and independent variables is vital before a plan is completed. Controlled variables must also be considered and included in a plan.

When asked about safety considerations, candidates should identify a risk but also identify a method of reducing that risk.

Mathematical calculations form an important part of the practical assessment. It is essential that candidates check all of their working carefully and take time to consider whether the resulting answer is realistic.

It is essential that candidates take time to ensure that their written work is legible. This includes the avoidance of 'overwriting' when mistakes are made or even writing in pencil and then overwriting in pen. When mistakes are made, they should be crossed out completely and the alternative answer written in a suitable clear space.

General comments

Candidates gave confident responses to a wide range of questions. The investigation plan was particularly well answered with some clear and concise descriptions of the relevant variables and practical methods.

Some of the questions required knowledge of standard food tests, and it is important that these are learnt in depth.

For the graph question, candidates need to think carefully about how to present all of the data effectively, in this case drawing a bar chart as instructed in the stem of the question.

Most candidates understood the key points when drawing the specimen. Adding texture such as stippling or cross-hatching should be avoided.

Comments on specific questions

Question 1

(a) (i) Candidates were required to investigate the breakdown of hydrogen peroxide by measuring the height of foam produced during the reaction. Most candidates obtained good results. A range of heights was seen, and most results gave the correct trend. A common error was to put units in the body of the table instead of in the heading. Sometime inappropriate units, such as inches, were used.

(ii) When asked for a conclusion it is important that candidates go back to the start of the question to remind themselves of the aim of the investigation. In this case, it was the effect of temperature on the activity of the enzyme. References to the height of the foam were just descriptions of the results not a conclusion.

(iii) Most candidates correctly identified the independent variable and the dependent variable, although some candidates got them the wrong way round.

(iv) This question asked the purpose of keeping test-tube **C** and test-tube **H** in water-baths for five minutes before adding the potato extract. Many candidates missed the point that the potato extract

had not yet been added and referred to the reaction taking place. Others mentioned maintaining a constant temperature, even though it was clear that the temperature of the water was not being maintained once it had been poured into the beakers. Relatively few candidates stated that the time was used to obtain water that was at the correct temperatures for the experiment (hot and cold).

(v) Repeating the investigation allows a wider range of results and so identify any that are anomalous. It does not in itself prevent anomalies. Repeating a procedure does not make it more accurate; this was a common answer to this question.

(vi) The identification of a safety precaution needs to be in the context of the question and also needs to be relevant to the investigation being conducted. For this question, many candidates described safety precautions such as wearing gloves or lab coats, or referred to the hot water being used, none of which were precautions that reduce the risk of cutting or grinding potato. Most laboratory gloves are plastic, which may protect against chemicals but will not be any use in protecting the fingers from a scalpel blade.

(b)(i) Candidates found this question demanding. Many clearly did not remember the formula for the volume of a cylinder, and even more forgot to convert mm into cm. When converting units, it was important that candidates did it before calculating any values. Very few were able to convert mm^3 into cm^3 . Some candidates made a good attempt at an answer and showed their calculations and thought processes, which gained some of the marks. This question clearly demonstrates the importance of showing all working when doing calculations.

(ii) When asked for a more accurate method of measuring the volume of gas, some candidates gave confused answers, based partly on the previous calculation. The use of a gas syringe or a description of collecting gas over water would have gained the mark. Simply stating the use of a measuring cylinder was insufficient for being able to measure the volume of a gas.

(c)(i)(ii) Some candidates were unable to state the positive test result for starch, or the reagent used to test for vitamin C. It is essential that all candidates are familiar with the food testing reagents as well as their initial and final colours.

(d) The planning question required candidates to plan an investigation into photosynthesis in an aquatic plant. It was clear that some candidates had a very good understanding of the procedure used to study the effect of light intensity on a plant such as *Elodea*, possibly reflecting practical work that they had performed in lessons. Others tended to refer to starch testing in de-starched leaves or the measurement of reducing sugars. Most candidates identified the need to change light intensity, and most could describe a way of doing this, usually by moving a bench lamp. The controlled variables were also well described. Safety issues were described by most candidates, but these needed to be specific to the practical procedure and not general safety measures such as wearing gloves or goggles.

Question 2

(a)(i) The drawing of the acorn was generally very well done with some very good clear diagrams. Adding texture to portions of the diagram, such as stippling and cross-hatching should be avoided. It is important that candidates observe the fine detail and include this in their drawing.

(ii) Most candidates were able to measure the length of the acorn correctly and to calculate the actual length. All working should be shown when doing any calculation, as marks can be awarded for showing how calculations are done, even if the final answer is incorrect. It is important that candidates understand the difference between decimal places and significant figures.

(iii) Candidates were asked for visible differences between the two types of acorn. Most candidates did this very well with features described in sufficient detail. Two common errors were seen. Firstly, some candidates gave answer that were too vague, stating for example, that the shape was different. Candidates must be specific and state how the shape is different and identify which acorn is being described. The second error seen to use descriptions that were not visible, such as the relative softness of the two acorns.

(b)(i) The majority of candidates were able to identify two controlled variables in this investigation. Some answers were too vague and lacked detail, for example by simply stating that the acorns were the same, rather than saying that the same number was used.

- (ii) The question asked for a bar chart, although a large number of candidates attempted to label and draw the axes as if plotting a line graph. As a result, many only plotted part of the data, often not including a key. The quality of the bars also needs to be considered when plotting. Some candidates did not use a ruler to draw the bars; this resulted in uneven lines that made it difficult to estimate the plotted values.
- (iii) This was a demanding question. Stronger responses described the idea of a representative sample to avoid bias. The idea of simply repeating the values was not appropriate.
- (iv) Most candidates were able to calculate the percentage water content of the acorn.

(c) Although most candidates were able to identify biuret solution, a significant number stated Benedict's reagent.

BIOLOGY

Paper 0610/61
Alternative to Practical

Key messages

It is important that candidates can confidently state the independent, dependent and controlled variables in an investigation. Candidates often find it challenging to describe the dependent variable.

When writing an investigation plan, candidates should describe the method step by step, rather than simply listing the independent, dependent and controlled variables, and providing a list of equipment needed. A detailed method will incorporate all of these and with enough detail to be awarded the marks.

Candidates need to pay attention to whether a calculation question asks to round to decimal places or significant figures, and to make sure they know the difference between these terms.

When drawing lines for a graph or drawing a specimen, candidates should use a freshly sharpened pencil as sometimes lines are too thick. Plot points should be drawn as a small cross.

General comments

It was evident that many candidates had a good level of practical experience as well as experience of tabulating their results and drawing graphs. Some excellent scripts were seen that scored very highly.

Candidates should ensure that they answer all questions and show their workings in calculations so that they may get partial credit if part of their calculation is incorrect.

Comments on specific questions

Question 1

(a) (i) The majority of candidates drew a table with columns for the concentration of acid and for the time taken for the agar to turn red. Most candidates converted the times on the stop-clocks into seconds as instructed. A common error was to give the heading for concentration as 'test-tube'. Candidates should have realised that the values in this column (0.4, 0.6, 0.8 and 1.0) were the concentrations of acid, and therefore this is what the column heading should be. Most included units for concentration and time, although some included units for time in the body of the table and some gave the unit for time as sec, rather than 's'. For those candidates who did not convert into seconds, they need to remember that the correct unit is minutes : seconds rather than just minutes. 'm' is incorrect as an abbreviation for minutes.

(ii) The start of the investigation stated that a student investigated the effect of concentration on diffusion. Therefore, the conclusion for the results should relate concentration to diffusion. In this case, that the rate of diffusion increases as concentration increases. Conclusions that only mentioned the time taken for the agar to turn red were insufficient.

(iii) Candidates had to state the independent and dependent variables in this investigation: concentration and time respectively. Occasionally these were given the opposite way round. Candidates found it more difficult to name the dependent variable than the independent variable. Instead, controlled variables were sometimes named, such as the type or size of agar block. Some gave the dependent variable as the volume of acid or distilled water, used to make up the different concentrations and some said it was the rate of diffusion. Some candidates restated the aim given at the start of the investigation as the independent variable, i.e. the effect of concentration on diffusion.

(iv) There were several different answers that candidates could describe to suggest improvements to the investigation. Many chose to point out that the investigation should be repeated multiple times and many also described the use of a colorimeter or colour standard to help determine the end-point when the agar had turned completely red. Others realised that only one syringe was used to make up the concentrations of acid and that they should use different syringes or clean them to avoid contamination. Some realised that it was important for the temperature to be kept constant.

Some responses lacked sufficient detail to get the mark. For instance, some described methods to measure the mass or size of the agar block but did not state that this was to ensure that they were all initially the same size. Others thought that the equipment used lacked precision and suggested other pieces of equipment, such as using a volumetric pipette rather than a syringe. Furthermore, some suggested ways to extend the investigation or speed up the investigation such as using smaller cubes of agar, or an increased range of acid concentrations. Candidates should know that repeating an investigation once is not enough and that it should be repeated at least twice.

(v) The main hazards in this investigation were the use of acid and cutting with a knife. Both had to be mentioned for the mark. Some did not follow the instruction and only gave one hazard. Many thought that the water-bath was a hazard. However, the method states that the temperature of the water-bath was warm, not hot, so this was not a danger. Other candidates described methods to reduce risk rather than the hazards themselves, e.g. wearing gloves or goggles.

(b) Candidates had to plan an investigation to determine the effect of temperature on osmosis in potato plant tissue. This is an investigation that all candidates should have completed in the classroom and one that they should be very familiar with. There were nine possible marking points, and many were able to describe a detailed investigation that was awarded full marks.

Those candidates that did not get many marks on this question often described expected results or theory in their plan. Some seemed to lack knowledge of osmosis and described growing potatoes rather than putting them into beakers or test-tubes of water or solutions. As with other questions, candidates sometimes struggled to describe the dependent variable adequately. Some omitted it completely or just said that the student should observe osmosis and did not realise that this needed to be measured in some way, such as by measuring the change in mass or length of the potato pieces. A number of candidates used the example of the first experiment in the paper and repeated the same method but used potato cubes, using dye or iodine to time how long it took for the colour to change.

Question 2

(a) (i) The majority of candidates knew that DCPIP is blue without vitamin C. Very occasionally, there was confusion with iodine solution and the answer blue-black was given.

(ii) This was an unfamiliar investigation to most candidates and there was some uncertainty as to which were the independent, the dependent and the controlled variables. Candidates should learn that in a table of results, the first column is the independent variable, and the second column is the dependent variable. Therefore, in this investigation concentration and volume of vitamin C were not the controlled variables. Naming these variables was a common mistake. Additionally, some candidates thought that the temperature was kept constant, but the method does not say this. Candidates should be clear when using the word 'amount' if they are meaning the volume or concentration. Those that gave the amount of DCPIP and concentration of DCPIP (or volume) as their answers were only awarded one mark.

(b) (i) Many candidates were able to demonstrate excellent graph drawing skills. There were many acceptable scales, as long as the data points covered at least half the grid in both directions and the scale was even. Some of the scales used on the y-axis for volume of vitamin C were too small. A common mistake was to give an uneven scale for the concentration of vitamin C. Some marked the number of squares between 125 and 250 as the same as between 250 and 500. Candidates are encouraged to choose sensible scales to make their plotting easier. For example, having 10 small squares for every 0.5 cm^3 of vitamin C rather than 10 small squares for every 0.6 cm^3 of vitamin C. Candidates are reminded not to extrapolate their line if they have joined the plots point-to-point and that a line of best fit should not be extrapolated off the grid. Some candidates did not label their axes correctly with the headings from the table.

(ii) This question was answered well with most candidates using their graph to estimate the vitamin C concentration of the orange juice when 1.2 cm^3 of orange juice was used. The majority of candidates followed the instructions and indicated on their graph how they obtained their estimate.

(c) (i) Most candidates stated that there is less vitamin C in stored apple juice than fresh apple juice. Some were looking for trends from sample 1 to sample 3 and thought that this showed a change in time, for example they said that the concentration of vitamin C in fresh juice decreased (over time). Some omitted crucial words such as vitamin C or fresh or stored.

(ii) This question was answered well, with many candidates clearly having learned the mark scheme for this question on previous exam papers. Many said that an anomalous result is one that does not follow the trend or pattern of the other results or is very different from the other results. Those that gave vague answers, such as an anomalous result is one that is inaccurate, wrong or an error, were not awarded the mark.

(iii) Many candidates found this question demanding even though they knew what an anomalous result was. The majority did not notice that 104 and 96 are more similar to each other than to 170 and most circled 96 rather than 170. Some circled an entire row in the table.

(iv) Most candidates were able to select the correct data from the table: 272 and 104. Various calculations were seen with many unsure how to calculate a percentage change. Some divided by the wrong denominator and some divided 104 by 272 or vice versa. Error carried forward was awarded for those that expressed their answer to one decimal place. Candidates needed to show that they knew this was a percentage decrease by including a negative sign with their answer. Some did not round their answer correctly or express their answer to one decimal place. Candidates should show their workings so that even if they make a mistake, they can still be awarded marks for correct rounding.

(d) (i) Some very good drawings were seen with a good level of detail. Most had a clear outline, but many had a broken outline. Some were incomplete and included internal shading. Most drawings were a good size and were not too small. Some drawings went into the surrounding text which was not accepted. The internal 'stripes' on the lower side should have been drawn as double lines, with some seeds shown as circles or ovals. Candidates should take care to note the details in a photograph, such as the number of sepals, or seeds etc., and this should be replicated in their drawing.

(ii) This is a familiar question to most candidates. They accurately measured the line and calculated the actual diameter of the strawberry fruit. The mark most likely to be missed was giving their answer to three significant figures. There was some confusion with decimal places and some just ignored this instruction. Others multiplied by 1.8 rather than dividing by 1.8.

(e) Candidates were confident at describing the Benedict's test. Some forgot to say that the reagent should be heated with the strawberry. If a temperature was quoted it should be greater than 30°C . It was not necessary to include a description of the expected results.

BIOLOGY

Paper 0610/62
Alternative to Practical

Key messages

When drawing conclusions from an investigation, candidates should reread the aim of the investigation. They should then give a conclusion linking the independent variable to the dependent variable.

When drawing graphs, candidates should not extrapolate their lines past the plotted data points.

General comments

Many candidates demonstrated good skills throughout the paper, including table drawing, graph drawing and biological specimen drawing.

Comments on specific questions

Question 1

(a) (i) The majority of candidates correctly determined the volumes. Some used the correct proportions but did not combine them to produce the required final volume.

(ii) Most candidates measured the potato discs correctly. Some candidates measured in centimetres rather than the required millimetres.

(iii) Most candidates were able to construct a suitable table with the correct number of columns or rows and with the headings separated from the body of the table by a line. They could also present the data, although a common error was to miss out a column for salt concentration (the independent variable), often just referring to the letter of the beaker. Another common error was to include units in the body of the table. A few candidates only recorded the change of length, which was not required in the table.

(iv) The majority of candidates correctly calculated the change in length.

(v) Some candidates gave an answer in terms of osmosis or correct water movement. Many candidates simply restated the results rather than giving a conclusion.

(vi) Many candidates correctly identified the potato length as the dependent variable. Weaker responses mistakenly thought it was the salt concentration, or osmosis in potatoes.

(vii) Many candidates incorrectly referred to improving reliability or accuracy, calculating a mean, or identifying or preventing anomalous results. They found it difficult to explain their answers using precise wording and many only stated that it was 'easier to measure ten discs', or 'hard to measure one disc'. Stronger responses referred to the change in length being too small to measure, or that the effect seen in a single disc might not be representative, or that a large sample would reduce the percentage error.

(viii) Some candidates gave a correct precaution, such as cutting away from the body or cutting on a flat surface. However, a significant proportion of candidates incorrectly thought that using gloves or just 'being careful' would be appropriate.

(b) Most candidates could identify iodine solution, but not all could identify that this meant that the potato contained starch. Benedict's or biuret solution were common incorrect responses.

(c) (i) Most candidates successfully produced a drawing of the leaf which was of suitable size with a double-lined midrib. However, some candidates had a broken outline, or used a ruler to draw the midrib, or used shading. Some candidates did not include the characteristic bulges at the bottom of the leaf. In a few cases the drawing extended into the printed text which was not accepted.

(ii) The majority of candidates measured the line correctly, although weaker responses measured in centimetres not millimetres. Most went on to correctly calculate the magnification, but fewer were able to present their answer to two significant figures. Some also incorrectly included units, such as mm, with their magnification.

(iii) This question proved demanding for many candidates. Many used vague or non-comparative language, describing only one specimen rather than contrasting both. Despite the question stem clearly stating that the tomato leaf is narrower than the potato leaf and explicitly asking for a feature other than size, many candidates still based their answer on size or on colour, despite colour not being visible in the diagram. Stronger responses gave a correct difference and a similarity. Most candidates only gave a suitable similarity, e.g., the presence of veins. Some candidates incorrectly referred to the presence of parallel veins.

Question 2

(a) (i) Some candidates correctly named a thermostatic water-bath as a suitable piece of apparatus. Some candidates just stated to use a water-bath, and weaker responses incorrectly described using a thermometer.

(ii) Most candidates correctly described at least one variable which was kept constant. Some candidates offered variables which were not named in the question, e.g., type of apple or pH. Some quoted 'temperature' despite the question asking for other variables or stated, 'concentration of pectinase' (the independent variable) or 'volume of juice' (the dependent variable).

(b) (i) Most candidates answered this question well. They understood that axes need to be fully labelled including units, a suitable linear scale for the data should be chosen, and a line drawn through the plotted data. The most common mistake was extrapolating the graph line to the origin. Weaker responses used the numbers from the table on the percentage concentration axis, and therefore did not use a linear scale, or did not use the entire width and height of the grid to plot their axes, giving a 'squashed' line which did not spread the points out enough to give an accurate plot. Candidates should be encouraged to use the highest number on the axis and work out a linear scale that reaches this number across the plotted area.

(ii) Most candidates were able to distinguish where 0.5% was on their graph and read off the corresponding value, based on their scale. Some candidates correctly read off their answer without following the instruction to show on the graph how they obtained their answer.

(iii) The majority of candidates only described the relationship between concentration and the volume of juice. However, stronger responses described that the volume became constant beyond 0.8%.

(iv) This question proved demanding for most candidates. A key concept tested here was the effect of the interval size of the independent variable. Many candidates found it difficult to grasp that when intervals are too wide, the actual optimum enzyme concentration may be missed. Most candidates only mentioned using concentrations above or below 0.8% and missed stating the need for concentrations at smaller intervals around 0.8%. Weaker responses referred to changing controlled variables, e.g., temperature and pH, or repeating the experiment multiple times.

(v) The majority of measuring apparatus pieces were shown with gradations with many candidates drawing measuring cylinders. Most candidates labelled their apparatus. Several candidates omitted to use filter paper with the filter funnel. There were a few non-scientific pieces of apparatus drawn, such as sieves or paper towels instead of a funnel and filter paper, and a few jugs for the measuring apparatus. Greater exposure to practical equipment and drawing practice would greatly support candidates in improving this skill. A few candidates included a balance to weigh the juice rather than to measure its volume as required.

Question 3

Candidates generally demonstrated a sound understanding of how to structure an investigation. Many responses showed logical sequencing and an awareness of basic scientific principles. Most candidates were able to give at least two controlled variables, two or more repeats and a suitable safety point. Stronger responses described the independent, dependent and controlled variables, considered reliability and safety and gave clear details of a method that would have been repeatable. The majority of candidates had a good grasp of controlled variables, although a number of candidates stated just time as one of the controlled variables, but did not specify time to see the colour change, or time to equilibrate to the different light intensities. Weaker responses only suggested two different light intensities, usually as a light room and a dark room. Candidates should realise that at least three values for the independent variable must be used to gain any meaningful trend. Weaker responses did not show an understanding of the relevance of the indicator and discussed measuring the volume of carbon dioxide or oxygen as the dependent variable, often counting bubbles. Only stronger responses mentioned the idea of equilibrating at each new light intensity, using a heat shield, or controlling the wavelength of light.

BIOLOGY

Paper 0610/63
Alternative to Practical

Key messages

Candidates should ensure that they read the questions carefully before starting to answer. This is particularly important for any planning exercise that is required. Identification of the dependent and independent variables is vital before a plan is completed. Controlled variables must also be considered and included in a plan.

When asked about safety considerations, candidates should identify a risk but also identify a method of reducing that risk.

Mathematical calculations form an important part of the practical assessment. It is essential that candidates check all of their working carefully and take time to consider whether the resulting answer is realistic.

It is essential that candidates take time to ensure that their written work is legible. This includes the avoidance of 'overwriting' when mistakes are made or even writing in pencil and then overwriting in pen. When mistakes are made, they should be crossed out completely and the alternative answer written in a suitable clear space.

General comments

Candidates gave confident responses to a wide range of questions. The investigation plan was particularly well answered with some clear and concise descriptions of the relevant variables and practical methods.

Some of the questions required knowledge of standard food tests, and it is important that these are learnt in depth.

For the graph question, candidates needed to think carefully about how to present all of the data effectively, in this case drawing a bar chart as instructed in the stem of the question.

Most candidates understood the key points when drawing the specimen. Adding texture such as stippling or cross-hatching should be avoided.

Comments on specific questions

Question 1

(a) (i) For this question candidates were presented with an investigation into the breakdown of hydrogen peroxide by measuring the height of foam produced during the reaction. Most candidates appeared to understand the procedure and managed to measure the heights of the foam at each temperature and record these in a suitable table. One of the common errors was to put units in the body of the table instead of in the heading. Sometime inappropriate units, such as inches, were used.

(ii) When asked for a conclusion it is important that candidates go back to the stem of the question to remind themselves of what is being investigated. In this case, it was the effect of temperature on the activity of the enzyme. No reference should be made to the height of the foam.

(iii) Most candidates correctly identified the independent variable and the dependent variable, although some candidates got them the wrong way round.

(iv) This question asked the purpose of keeping test-tube **C** and test-tube **H** in water-baths for five minutes before adding the potato extract. Many candidates missed the point that the potato extract

had not yet been added and referred to the reaction taking place. Others mentioned maintaining a constant temperature, even though it was clear that the temperature of the water was not being maintained once it had been poured into the beakers. Relatively few candidates stated that the time was used to obtain water that was at the correct temperatures for the experiment, namely, hot, and cold.

(v) Repeating the investigation allows a wider range of results and so identify any that are anomalous. It does not in itself prevent anomalies. Repeating a procedure does not make it more accurate; this was a common answer to this question.

(vi) The identification of a safety precaution needs to be in the context of the question and also needs to be relevant to the investigation being conducted. For this question, many candidates described safety precautions such as wearing gloves or lab coats, or referred to the hot water being used, none of which were precautions that reduce the risk of cutting or grinding potato. Most laboratory gloves are plastic, which may protect against chemicals but will not be any use in protecting the fingers from a scalpel blade.

(b)(i) Candidates found this question demanding. Many clearly did not remember the formula for the volume of a cylinder, and even more forgot to convert mm into cm. When converting units, it was important that candidates did so before calculating any values. Very few were able to convert mm^3 into cm^3 . Some candidates made a good attempt at an answer and showed their calculations and thought processes, which gained some of the marks. This question clearly demonstrates the importance of showing all working when doing calculations.

(ii) When asked for a more accurate method of measuring the volume of gas, some candidates gave confused answers, based partly on the previous calculation. The use of a gas syringe or a description of collecting gas over water would have gained the mark. Simply stating the use of a measuring cylinder was insufficient for being able to measure the volume of a gas.

(c)(i)(ii) Some candidates were unable to state the positive test result for starch, or the reagent used to test for vitamin C. It is essential that all candidates are familiar with the food testing reagents as well as their initial and final colours.

(d) The planning question required candidates to plan an investigation into photosynthesis in an aquatic plant. It was clear that some candidates had a very good understanding of the procedure used to study the effect of light intensity on a plant such as *Elodea*, possibly reflecting practical work that they had performed in lessons. Others tended to refer to starch testing in de-starched leaves or the measurement of reducing sugars. Most candidates identified the need to change light intensity, and most could describe a way of doing this, usually by moving a bench lamp. The controlled variables were also well described. Safety issues were described by most candidates, but these needed to be specific to the practical procedure and not general safety measures such as wearing gloves or goggles.

Question 2

(a)(i) The drawing of the acorn was generally very well done with some very good clear diagrams. Adding texture to portions of the diagram, such as stippling and cross-hatching should be avoided. It is important that candidates observe the fine detail and include this in their drawing.

(ii) Most candidates were able to measure the length of the acorn correctly and to calculate the actual length. All working should be shown when doing any calculation, as marks can be awarded for showing how calculations are done, even if the final answer is incorrect. It is important that candidates understand the difference between decimal places and significant figures.

(iii) Candidates were asked for visible differences between the two types of acorn. Most candidates did this very well with features described in sufficient detail. Two common errors were seen. Firstly, some candidates gave answer that were too vague, stating for example, that the shape was different. Candidates must be specific and state how the shape is different and identify which acorn is being described. The second error seen to use descriptions that were not visible, such as the relative softness of the two acorns.

(b) (i) The majority of candidates were able to identify two controlled variables in this investigation. Some answers were too vague and lacked detail, for example by simply stating that the acorns were the same, rather than saying that the same number was used.

(ii) The question asked for a bar chart, although a large number of candidates attempted to label and draw the axes as if plotting a line graph. As a result, many only plotted part of the data, often not including a key. The quality of the bars also needs to be considered when plotting. Some candidates did not use a ruler to draw the bars; this resulted in uneven lines that made it difficult to estimate the plotted values.

(iii) This was a demanding question. Stronger responses described the idea of a representative sample to avoid bias. The idea of simply repeating the values was not appropriate.

(iv) Most candidates were able to calculate the percentage water content of the acorn.

(c) Although most candidates were able to identify biuret solution, a significant number stated Benedict's reagent.