

Cambridge IGCSE™

CANDIDATE
NAMECENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

CHEMISTRY**0620/32**

Paper 3 Theory (Core)

October/November 2025**1 hour 15 minutes**

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has **20** pages. Any blank pages are indicated.

1 Fig. 1.1 shows part of the Periodic Table.

I	II						III	IV	V	VI	VII	VIII	
							H						He
								B	C	N	O		Ne
Na												Cl	
K	Ca						Fe				Zn		Br
											Ag		I

Fig. 1.1

Answer the following questions using only the symbols of the elements in Fig. 1.1. Each symbol may be used once, more than once or not at all.

Give the symbol of the element that:

(a) is used as a lubricant

[1]

(b) forms an ion which is present in every dilute acid

[1]

(c) is a metal which does **not** react with steam

..... [1]

(d) is in Period 3 and forms an ion with a charge of 1– when it reacts.

[1]

[Total: 4]

2 The symbol for an atom of krypton is shown.

(a) Complete Table 2.1 to show the number of electrons and neutrons in one atom of $^{84}_{36}\text{Kr}$.

Table 2.1

number of electrons	
number of neutrons	

[2]

(b) Krypton is a gas at room temperature and pressure.

A sample of krypton is placed in a sealed syringe with a freely moving plunger.

Complete Table 2.2 to show the effect, if any, on the volume of krypton when:

- the temperature of the krypton is decreased
- the pressure of the krypton is increased.

Use the words **increases**, **decreases** or **no change** in your answer.

Table 2.2

change	effect on the volume of krypton
temperature is decreased	
pressure is increased	

[2]

(c) When krypton is cooled, it becomes a liquid.

Describe the arrangement of the particles in liquid krypton.

Give your answer in terms of particle separation and motion.

particle separation

.....

particle motion

.....

[2]

[Total: 6]

3 (a) Table 3.1 shows the masses of ions, in mg, present in a 500 cm^3 sample of contaminated water.

Table 3.1

name of ion	formula of ion	mass of ion in 500 cm^3 of contaminated water / mg
ammonium		2.5
chloride	Cl^-	4.2
hydrogencarbonate	HCO_3^-	6.0
iodide	I^-	0.4
lithium	Li^+	4.3
magnesium	Mg^{2+}	0.8
nitrate	NO_3^-	8.5
phosphate	PO_4^{3-}	0.7
potassium	K^+	9.3
sulfate	SO_4^{2-}	0.3

Answer these questions using the information from Table 3.1.

(i) Name the negative ion that has the highest concentration.

..... [1]

(ii) State the formula of the ammonium ion.

..... [1]

(iii) Describe a test to identify the presence of chloride ions, Cl^- , in a sample of water.

test

observations

..... [2]

(iv) Calculate the mass of hydrogencarbonate ions, HCO_3^- , in 200 cm^3 of the contaminated water.

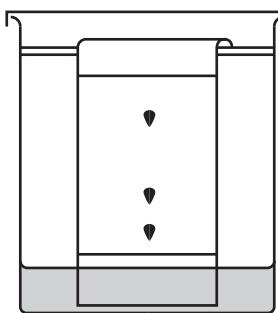
mass = mg [1]

(b) The water sample is **not** suitable for use in practical chemistry.

Name a process that makes the water suitable for use in practical chemistry.

..... [1]

(c) Water extracted from a river is made suitable for drinking by filtration and then treatment with carbon followed by chlorination.


(i) State why carbon is used in the treatment of water.

..... [1]

(ii) State why water is chlorinated.

..... [1]

(d) Fig. 3.1 shows the apparatus used to analyse a sample of water containing coloured substances and the results obtained.

Fig. 3.1

(i) Name the separation method shown in Fig. 3.1.

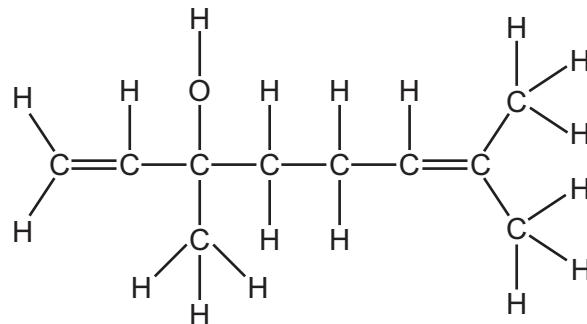
..... [1]

(ii) Label the solvent front in Fig. 3.1.

[1]

[Total: 10]

BLANK PAGE


DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

4 (a) Molecules of compound **A** are found in some plants.

Fig. 4.1 shows the displayed formula of a molecule of compound **A**.

Fig. 4.1

Deduce the molecular formula of compound **A** to show the number of atoms of carbon, hydrogen and oxygen.

..... [1]

(b) On Fig. 4.1, draw a circle around **one** part of the molecule responsible for the decolourisation of aqueous bromine. [1]

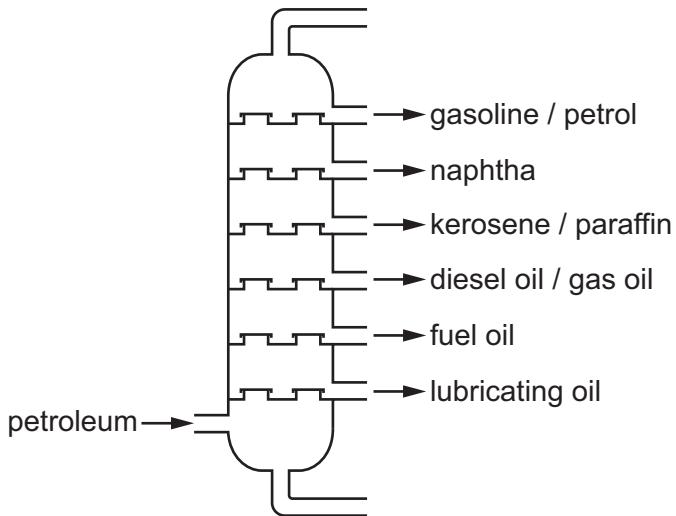
(c) A different molecule found in plants has the molecular formula $C_{10}H_{16}O_2$.

Complete Table 4.1 to calculate the relative molecular mass of $C_{10}H_{16}O_2$.

Table 4.1

type of atom	number of atoms	relative atomic mass	
carbon	10	12	$10 \times 12 = 120$
hydrogen		1	
oxygen		16	

relative molecular mass = [2]



(d) Petroleum is a fossil fuel.

Name **one other** fossil fuel.

..... [1]

(e) Fig. 4.2 shows the names of some of the fractions obtained from petroleum using a fractionating column.

Fig. 4.2

Using only the fractions shown in Fig. 4.2, name the fraction which contains compounds that:

(i) have the longest chain length

..... [1]

(ii) have the highest volatility

..... [1]

(iii) are used for home heating systems.

..... [1]

(f) Table 4.2 shows some properties of hydrocarbons found in fuel for jet engines.

Table 4.2

name	molecular formula	melting point /°C	boiling point /°C
nonene	C_9H_{18}	-81	147
decane	$C_{10}H_{22}$	-30	174
undecane	$C_{11}H_{24}$	-26	195
dodecane	$C_{12}H_{26}$	-10	216
tridecane	$C_{13}H_{28}$	-5	234

(i) Identify the unsaturated hydrocarbon in Table 4.2.

..... [1]

(ii) Explain your answer in (f)(i).

..... [1]

(g) (i) In excess oxygen, decane undergoes complete combustion to produce carbon dioxide and one other product.

Identify this other product.

..... [1]

(ii) State **one** adverse effect to the environment of the production of carbon dioxide.

..... [1]

(h) (i) Ethanol can be used to make jet fuel.

Draw the displayed formula of ethanol. Show all the atoms and all the bonds.

[2]

(ii) Ethanol can be manufactured from ethene and one other reactant.

Name the other reactant, and state the temperature and pressure used.

reactant

temperature °C

pressure atm

[3]

[Total: 17]

5 This question is about elements in different groups of the Periodic Table and their compounds.

(a) Nitrogen is in Group V of the Periodic Table.

Explain why nitrogen is placed in Group V.

Give your answer in terms of electronic configuration.

..... [1]

(b) Tellurium is in Group VI of the Periodic Table.

Table 5.1 shows the melting point and the boiling point of tellurium.

Table 5.1

melting point/°C	450
boiling point/°C	988

Use Table 5.1 to deduce the physical state of tellurium at 650 °C.

Give a reason for your answer.

physical state

reason

..... [2]

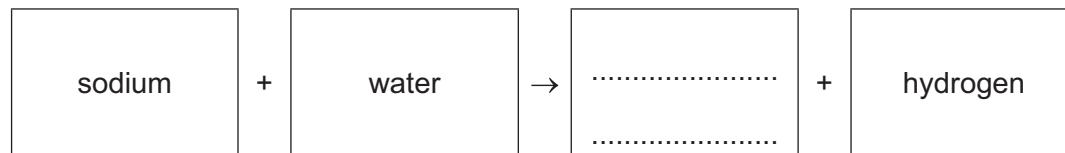
(c) Bromine is in Group VII of the Periodic Table.

Give the colour and state of bromine at room temperature and pressure.

colour

state

[2]


(d) When a sample of sodium is added to a large container of cold water, a chemical reaction occurs.

(i) Describe what is observed when sodium is added to water.

.....
.....
.....
.....
.....
..... [3]

(ii) Complete the word equation for the reaction of sodium with water.

[1]

(e) Sodium carbonate reacts with sulfuric acid to form sodium sulfate, carbon dioxide and one other product.

Complete the symbol equation for this reaction.

[2]

(f) Solid sodium hydroxide is slowly added to distilled water containing a few drops of thymolphthalein and the mixture is stirred.

(i) State the colour change observed when sodium hydroxide is added to water containing thymolphthalein.

from to [2]

(ii) Aqueous sodium hydroxide is an alkali.

Complete the sentence about an alkali using **one** of the words from the list.

acid base indicator salt

An alkali is a soluble

[1]

(g) Fluorine is in Group VII of the Periodic Table. Fluorine reacts with sodium to form the ionic compound sodium fluoride.

Complete the dot-and-cross diagram in Fig. 5.1 for sodium fluoride to show:

- the electronic configuration for each ion
- the charge on each ion.

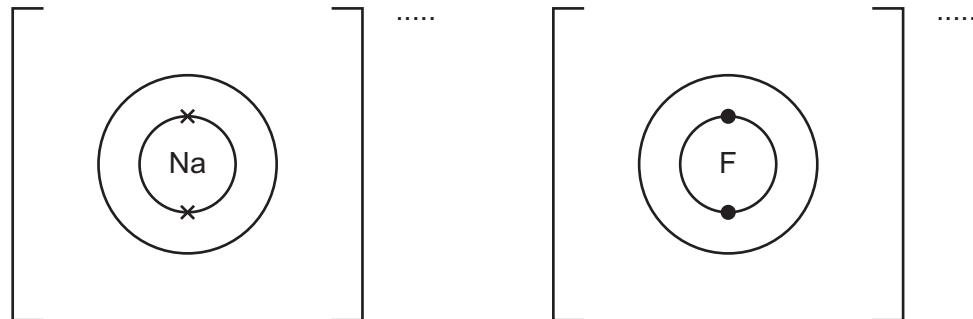


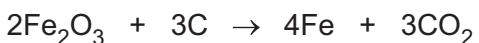
Fig. 5.1

[3]

[Total: 17]

6 This question is about metals.

(a) Iron is extracted from its ore using carbon in a blast furnace.
Aluminium is extracted from its ore using electrolysis.


(i) Name the main ore of aluminium.

..... [1]

(ii) Explain why aluminium is **not** extracted from its ore by reduction with carbon.
Give your answer in terms of the reactivity series.

..... [1]

(iii) An equation for the reduction of iron(III) oxide using carbon is shown.

Explain how this equation shows that iron(III) oxide is reduced.

..... [1]

(b) Iron is made into stainless steel. Stainless steel is an alloy that resists rusting.

(i) State what is meant by the term alloy.

..... [2]

(ii) Name the **two** substances required for iron to rust.

..... and [2]

(iii) State the chemical name for rust.

..... [2]

(c) Table 6.1 shows the observations when four different metals are added separately to dilute hydrochloric acid.

Table 6.1

metal	observations
Mn	bubbles of gas given off quickly and the temperature of the mixture increases slowly
Fe	a few bubbles of gas given off very slowly and the temperature of the mixture increases very slowly
Sr	many bubbles of gas given off very quickly and the temperature of the mixture increases rapidly
Nb	no bubbles of gas given off and no temperature increase of the mixture

(i) Put the four metals in order of their reactivity.
Put the least reactive metal first.

least reactive \longrightarrow most reactive

--	--	--	--

[2]

(ii) Complete the word equation for the reaction of strontium with hydrochloric acid.

[2]

[Total: 13]

7 Fig. 7.1 shows the apparatus used to pass electricity through molten magnesium chloride using platinum electrodes.



Fig. 7.1

(a) Name the process shown in Fig. 7.1.

..... [1]

(b) Label the electrolyte in Fig. 7.1.

[1]

(c) Name the product formed at the anode.

..... [1]

(d) The electrodes are made of platinum.

(i) State **one** property of platinum that makes it suitable for use as an electrode.

..... [1]

(ii) Suggest a non-metal that could be used as the electrodes.

..... [1]

(e) State whether the process shown in Fig. 7.1 produces a physical or chemical change.

Explain your answer.

type of change

explanation

..... [1]

(f) Magnesium chloride, $MgCl_2$, exists in different forms.

Draw **one** line from each form of magnesium chloride to its description.

form of magnesium chloride**description**aqueous $MgCl_2$ solid $MgCl_2$ chemically combined with wateranhydrous $MgCl_2$ $MgCl_2$ dissolved in waterhydrated $MgCl_2$ solid $MgCl_2$ containing no water

[2]

[Total: 8]

8 Excess dilute hydrochloric acid is added to aqueous sodium sulfide to form aqueous sodium chloride and gaseous hydrogen sulfide, H_2S .

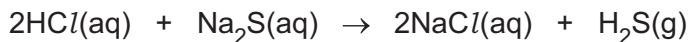
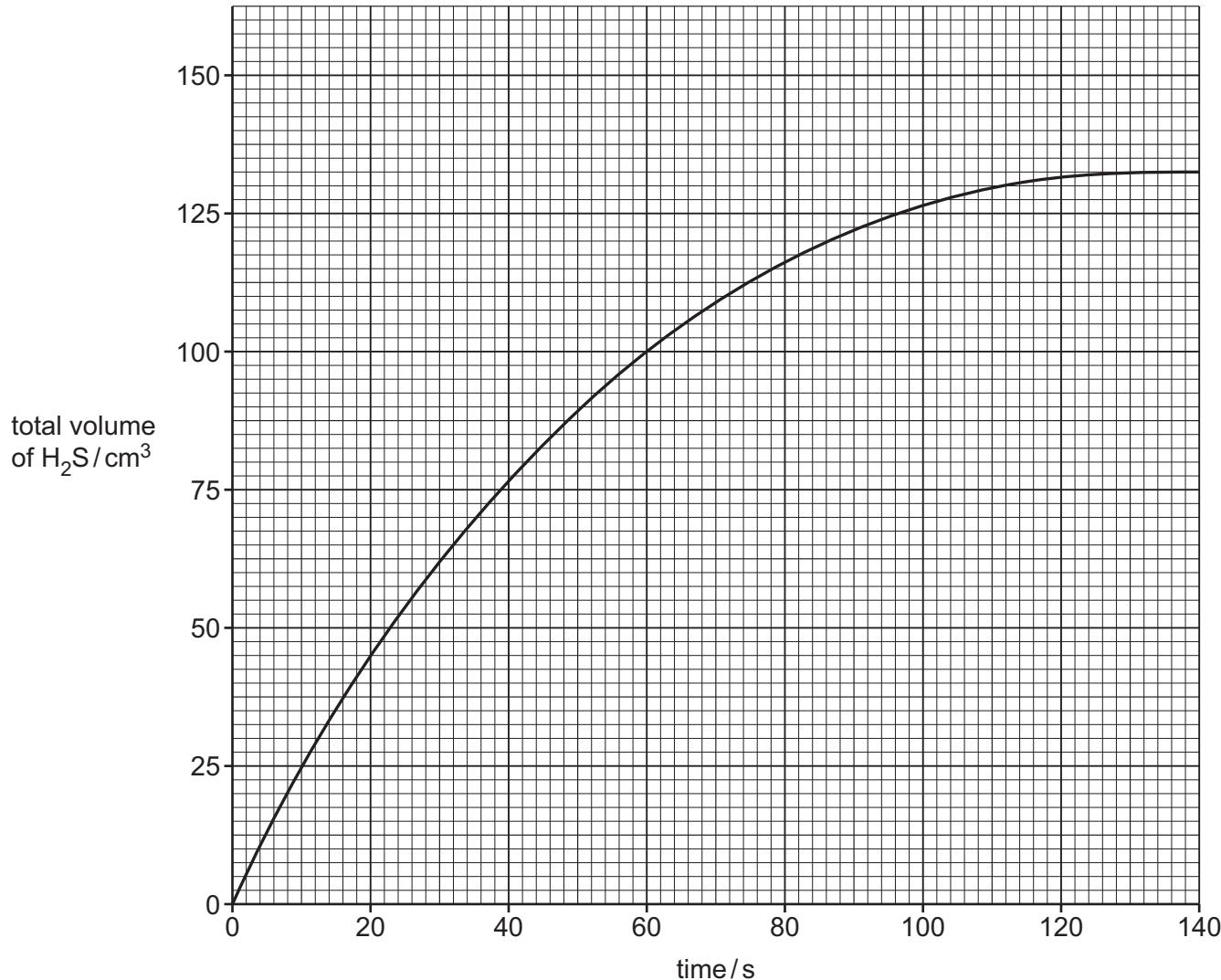



Fig. 8.1 shows the total volume of hydrogen sulfide gas, H_2S , produced as the reaction proceeds.

Fig. 8.1

(a) Use Fig. 8.1 to determine the total volume of H_2S produced when the reaction is complete.

total volume of $\text{H}_2\text{S} = \dots \text{cm}^3$ [1]

(b) The reaction is repeated using hydrochloric acid of a higher concentration.

All other conditions stay the same.

State the effect, if any, on:

(i) the time taken for the reaction to finish

..... [1]

(ii) the total volume of H_2S produced when the reaction is complete.

..... [1]

(c) Fig. 8.2 shows the reaction pathway diagram for the reaction of dilute hydrochloric acid with aqueous sodium sulfide.

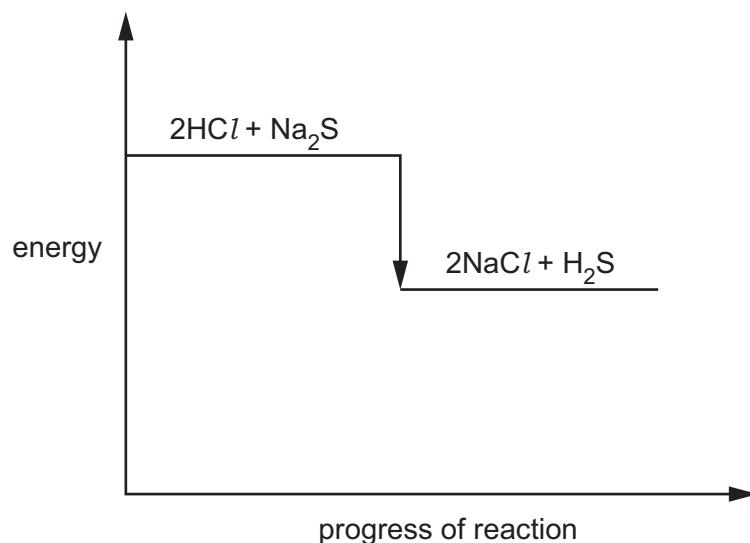


Fig. 8.2

Deduce the type of energy change shown in the diagram in Fig. 8.2.

Explain your answer.

.....
.....
.....
..... [2]

[Total: 5]

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

