

Cambridge IGCSE™

CANDIDATE
NAME
CENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/11

Paper 1 Non-calculator (Core)

October/November 2025

1 hour 15 minutes

You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- Calculators must **not** be used in this paper.
- You may use tracing paper.
- You must show all necessary working clearly. You will be given marks for correct methods even if your answer is incorrect.

INFORMATION

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages.

List of formulas

Area, A , of triangle, base b , height h .

$$A = \frac{1}{2}bh$$

Area, A , of circle of radius r .

$$A = \pi r^2$$

Circumference, C , of circle of radius r .

$$C = 2\pi r$$

Curved surface area, A , of cylinder of radius r , height h .

$$A = 2\pi rh$$

Curved surface area, A , of cone of radius r , sloping edge l .

$$A = \pi rl$$

Surface area, A , of sphere of radius r .

$$A = 4\pi r^2$$

Volume, V , of prism, cross-sectional area A , length l .

$$V = Al$$

Volume, V , of pyramid, base area A , height h .

$$V = \frac{1}{3}Ah$$

Volume, V , of cylinder of radius r , height h .

$$V = \pi r^2 h$$

Volume, V , of cone of radius r , height h .

$$V = \frac{1}{3}\pi r^2 h$$

Volume, V , of sphere of radius r .

$$V = \frac{4}{3}\pi r^3$$

Calculators must **not** be used in this paper.

1 (a) Work out.

$$10 - 2 \times 3$$

..... [1]

(b) Write the missing number in each box.

$$\begin{array}{r} 7 \boxed{} 3 . 5 8 \\ + 2 0 \boxed{} . \boxed{} 3 \\ \hline \boxed{} 3 0 . 2 \boxed{} \end{array}$$

[2]

(c) Work out $(0.1)^2$.

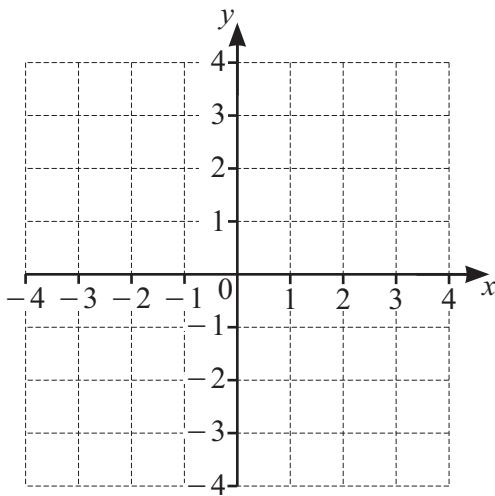
..... [1]

2 Write 87.49 correct to the nearest whole number.

..... [1]

3 (a) Convert 0.5 metres to millimetres.

..... mm [1]


(b) Write 12 hours as a fraction of a day.

..... [1]

4 Write 0.67 as a percentage.

..... % [1]

(a) On the grid, plot the point $(-3, 1)$. [1]

(b) The line L passes through the point $(1, -2)$.
The gradient of line L is zero.

On the grid, draw the line L . [1]

6 The list shows the number of bedrooms in each of 12 houses.

3 5 5 2 4 2 3 4 2 1 1 3

(a) Find the median.

..... [2]

(b) Find the range.

..... [1]

7 Hamid walks at an average speed of 1.1 m/s.
He walks for 1 minute and 30 seconds.

Find the distance that Hamid walks.

..... m [2]

8 (a) Simplify.

$$3a - 3b + 4a - 2a + b$$

..... [2]

(b) Simplify.

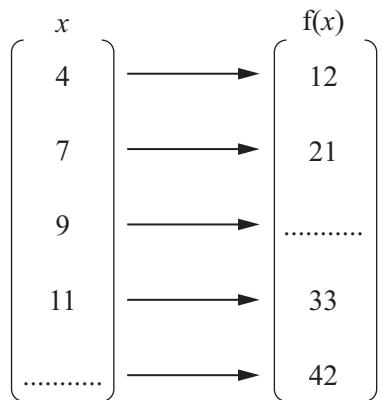
$$\frac{7x}{2x^2}$$

..... [1]

(c) Expand.

$$8a(2a - 5b)$$

..... [2]


9 In a competition, Amal scores $\frac{2}{5}$ of her team's goals.

Amal scores 6 goals.

Work out the total number of goals Amal's team scores in the competition.

..... [2]

10 (a) Complete the mapping diagram.

[2]

(b) $g(x) = 5x - 4$

Find the value of x when $g(x) = 6$.

$x =$ [2]

DO NOT WRITE IN THIS MARGIN

11 (a) Share \$280 in the ratio 5 : 2.

\$ and \$ [2]

(b) Write the ratio 180 : 360 : 480 in its simplest form.

..... : : [2]

12 These are the first 4 terms of a sequence.

1 5 9 13

(a) Write down the next term in this sequence.

..... [1]

(b) Explain why 31 is **not** in this sequence.

..... [1]

13 Use calculations to show that the interior angle of a regular octagon is 135° .

[2]

14 (a) $2^x = 64$ Find the value of x .

$x = \dots \quad [1]$


(b) $4^y = \frac{1}{4}$ Find the value of y .

$y = \dots \quad [1]$

15 These are the heights, in cm, of 12 flowers.

25	39	18	19	48	41
12	34	14	24	20	46

(a) Draw an ordered stem-and-leaf diagram for these heights.

Key | represents cm
[3]

(b) Write down the fraction of these flowers with height less than 30 cm.

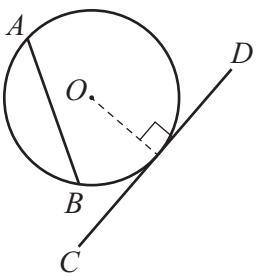
..... [1]

16 The area of a circle is $36\pi \text{ cm}^2$.

Find the radius of the circle.

..... cm [2]

17 (a) Write down all the factors of 35.


..... [2]

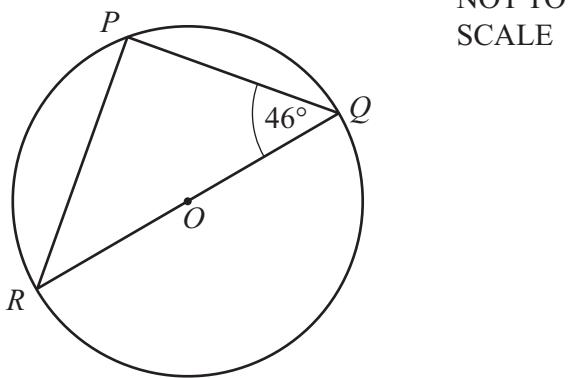
(b) Find the lowest common multiple (LCM) of 30 and 54.

..... [2]

18 (a)

The diagram shows a circle, centre O , and the straight lines AB and CD .

Write down the mathematical name of

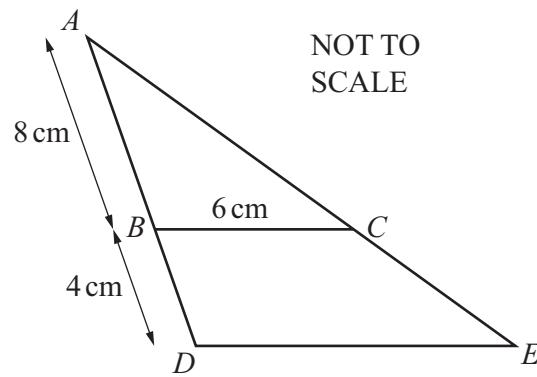

(i) the line AB

..... [1]

(ii) the line CD .

..... [1]

(b)


Points P , Q and R lie on a circle, centre O .
 QR is a diameter.

Work out angle PRQ .

Angle PRQ = [2]

19

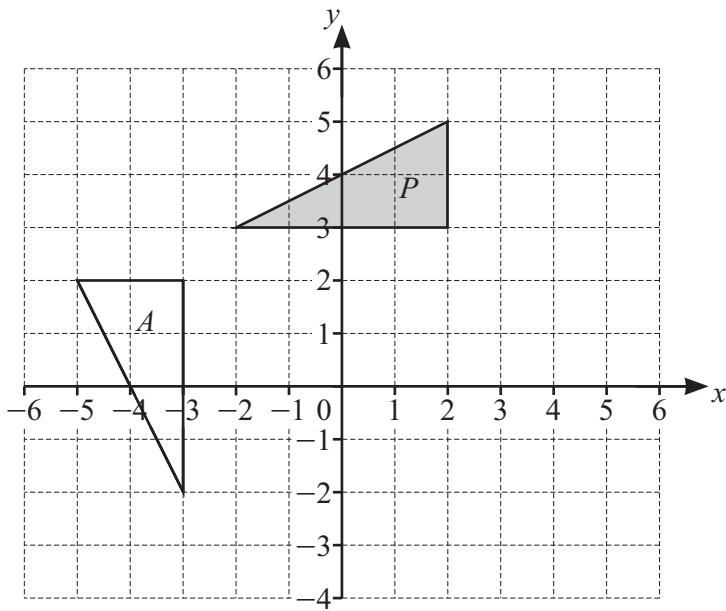
Triangle ABC and triangle ADE are mathematically similar.

Work out DE .

$$DE = \dots \text{ cm} \quad [2]$$

20 Solve the simultaneous equations.

$$\begin{aligned} 2x + 3y &= 5 \\ -4x + y &= 11 \end{aligned}$$


$$x = \dots$$

$$y = \dots$$

[3]

Question 21 is printed on the next page.

(a) Describe fully the **single** transformation that maps triangle P onto triangle A .

.....

..... [3]

(b) Translate triangle P by the vector $\begin{pmatrix} 2 \\ -4 \end{pmatrix}$. [2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

