

Cambridge IGCSE™

CANDIDATE
NAME
CENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/21

Paper 2 Non-calculator (Extended)

October/November 2025

1 hour 30 minutes

You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- Calculators must **not** be used in this paper.
- You may use tracing paper.
- You must show all necessary working clearly. You will be given marks for correct methods even if your answer is incorrect.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has **16** pages. Any blank pages are indicated.

List of formulas

Area, A , of triangle, base b , height h .

$$A = \frac{1}{2}bh$$

Area, A , of circle of radius r .

$$A = \pi r^2$$

Circumference, C , of circle of radius r .

$$C = 2\pi r$$

Curved surface area, A , of cylinder of radius r , height h .

$$A = 2\pi rh$$

Curved surface area, A , of cone of radius r , sloping edge l .

$$A = \pi rl$$

Surface area, A , of sphere of radius r .

$$A = 4\pi r^2$$

Volume, V , of prism, cross-sectional area A , length l .

$$V = Al$$

Volume, V , of pyramid, base area A , height h .

$$V = \frac{1}{3}Ah$$

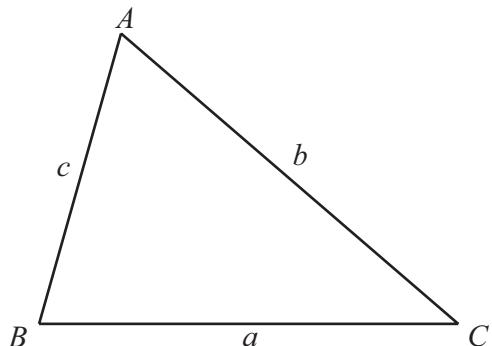
Volume, V , of cylinder of radius r , height h .

$$V = \pi r^2 h$$

Volume, V , of cone of radius r , height h .

$$V = \frac{1}{3}\pi r^2 h$$

Volume, V , of sphere of radius r .


$$V = \frac{4}{3}\pi r^3$$

For the equation

$$ax^2 + bx + c = 0, \text{ where } a \neq 0,$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For the triangle shown,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\text{Area} = \frac{1}{2}ab \sin C$$

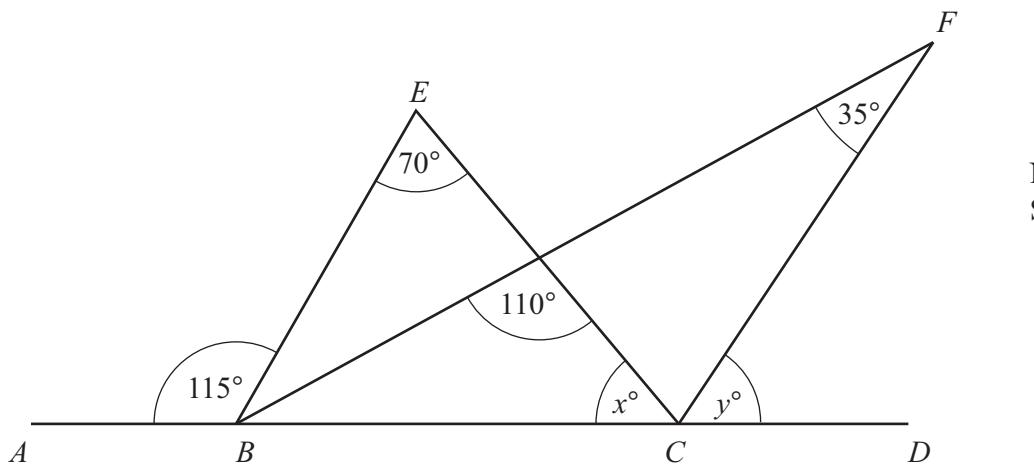
Calculators must **not** be used in this paper.

1 Complete the table.

Fraction		Decimal		Percentage
$\frac{3}{10}$	=	0.3	=	30
	=	0.09	=	
$\frac{7}{20}$	=		=	

[2]

2 Find the reciprocal of $1\frac{3}{5}$.


..... [2]

3 By writing each number correct to 1 significant figure, estimate the value of

$$\frac{\sqrt{8.76} \times 43.82}{0.592}.$$

[2]

NOT TO
SCALE*ABCD* is a straight line.(a) (i) Find the value of x .

..... [1]

(ii) Find the value of y .

..... [2]

(b) Give a reason why BE is not parallel to CF .

.....

..... [1]

5 $\mathbf{a} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$ $\mathbf{b} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$

Find the vector $2\mathbf{a} - 3\mathbf{b}$.
$$\left(\quad \right)$$
 [2]

6 The types of vehicle travelling on a road were recorded.
The table shows the results for a sample of 200 vehicles.

Type of vehicle	Car	Van	Truck	Motorcycle
Number of vehicles	84	64	40	12
Relative frequency				

(a) Complete the table. [2]

(b) One day 5000 vehicles use the road.

Work out an estimate for the number of trucks that use the road that day.

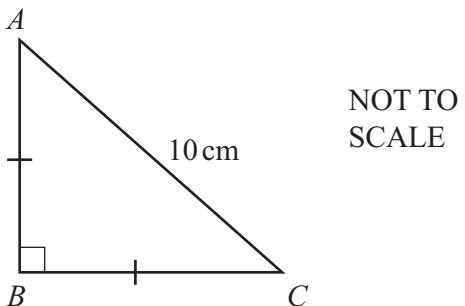
..... [1]

7 A quadrilateral has exactly one line of symmetry.
It has no pairs of parallel sides.

Write down the mathematical name for this quadrilateral.

..... [1]

8 Rearrange each formula to make b the subject.


(a) $c = \sqrt{5ab}$

$b = \dots$ [2]

(b) $P = \frac{3a+2b}{5a-b}$

$b = \dots$ [3]

9

In the diagram, angle $ABC = 90^\circ$.
 $AB = BC$ and $AC = 10 \text{ cm}$.

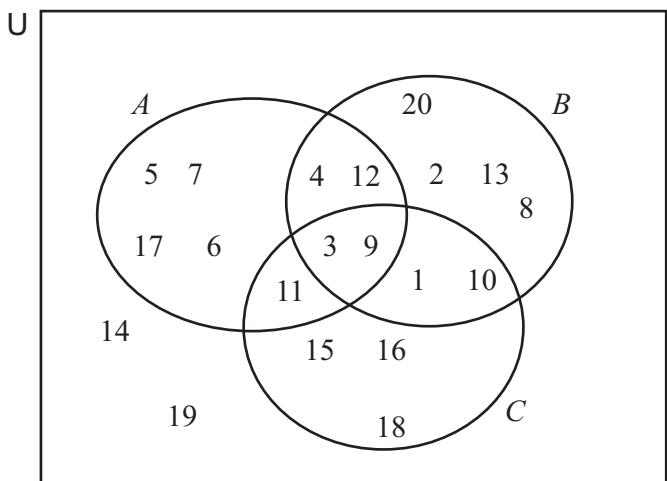
Calculate the area of triangle ABC .

$\dots \text{ cm}^2$ [3]

10 Samina has two pieces of string.
The lengths of the two pieces of string are in the ratio $5 : 3$.

Samina cuts 4 cm off each piece of string.
The lengths of the two remaining pieces of string are in the ratio $2 : 1$.

Find the original lengths of Samina's pieces of string.


..... cm

..... cm

[4]

11 The numbers 1 to 20 are shown in the Venn diagram.

(a) List the elements of $A \cap B$.

..... [1]

(b) Find

(i) $n(A \cup C)$

..... [1]

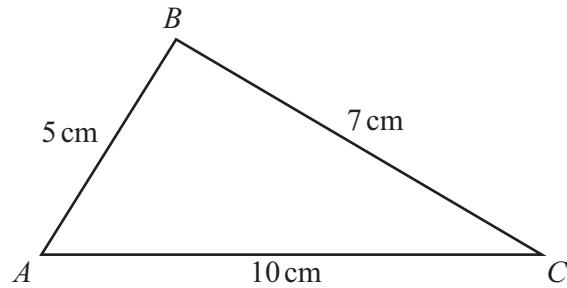
(ii) $n[(A \cup B)' \cap C]$.

..... [1]

(c) Two of the 20 numbers are picked at random without replacement.

Find the probability that

(i) both numbers are in $(A \cup B)' \cap C$


..... [2]

(ii) one number is in A but not B and the other number is in B but not A .

..... [3]

12

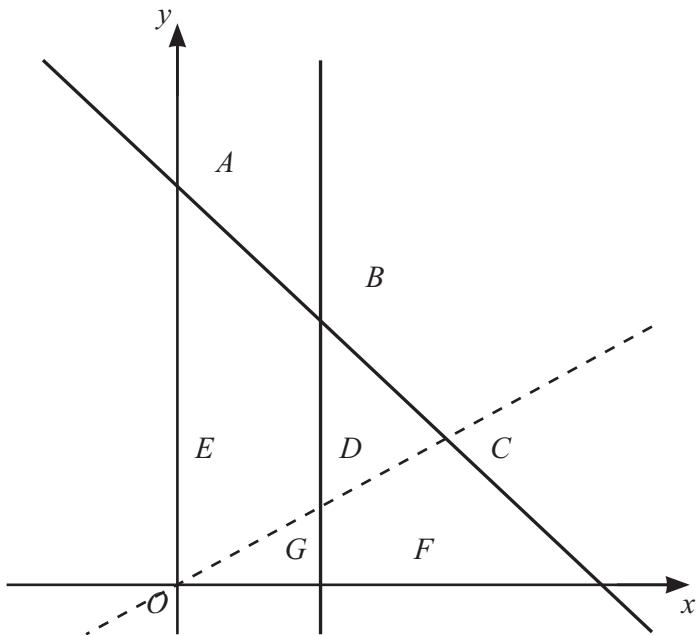
NOT TO
SCALE

In triangle ABC , $AB = 5$ cm, $BC = 7$ cm and $AC = 10$ cm.

Show by calculation that angle ABC is obtuse.

[3]

13 (a)
$$\frac{2^5 \times 2^p}{2^3} = 2^6$$


Find the value of p .

$p = \dots$ [1]

(b) Find the value of $64^{-\frac{2}{3}}$.

\dots [2]

The lines with equations $x = 2$, $y = \frac{1}{2}x$ and $x + y = 5$ are shown on the diagram.

These lines divide the space into 7 different regions A, B, C, D, E, F and G .

Write down the inequalities which define

(a) region A

..... [1]

(b) region C

..... [1]

(c) region E .

..... [2]

15 $f(x) = 3x - 1$ $g(x) = 3 - 2x$ $h(x) = x^2 - 2x + 3$

(a) Find $f(-3)$.

..... [1]

(b) Find $f^{-1}(10)$.

..... [2]

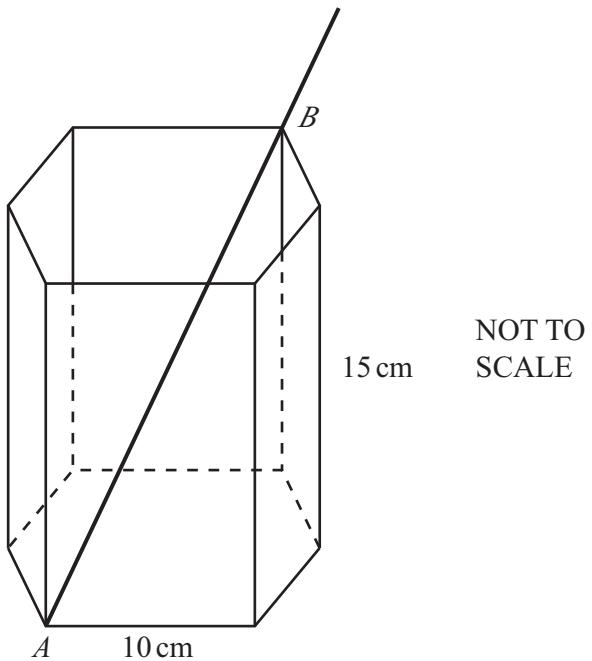
(c) Find and simplify $gh(x)$.

..... [2]

(d) Find $g^{-1}(x)$.

$g^{-1}(x) =$ [2]

(e) Solve $h(x) = f(x)$.


$x =$ or $x =$ [4]

16 (a) Show that the interior angle of a regular hexagon is 120° .

[1]

(b)

The diagram shows a container in the shape of a prism.

The cross-section of the prism is a regular hexagon with side length 10 cm.

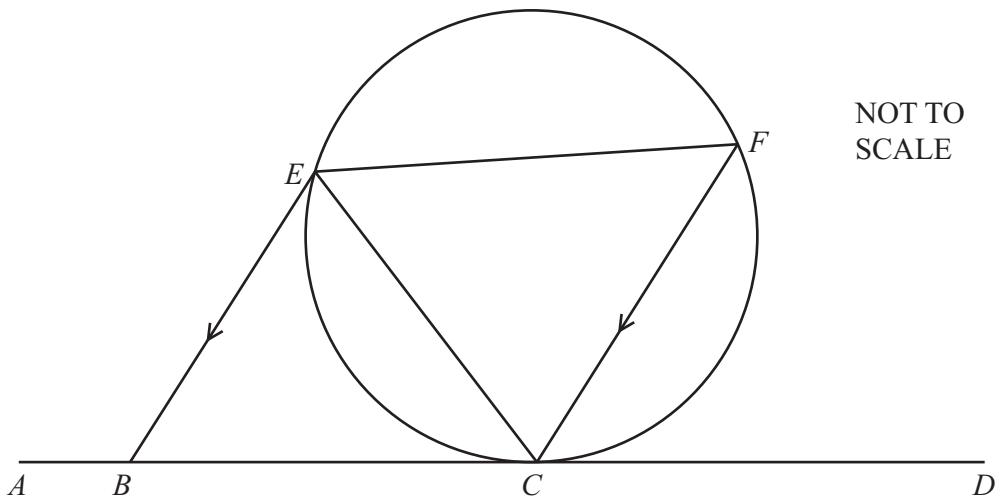
The height of the prism is 15 cm.

A stick has one end at A and rests against B .

The stick makes an angle of x with the base.

Find $\tan x$.

$$\tan x = \dots \quad [4]$$



17 Write $(5 - 2\sqrt{3})^2$ in the form $a + b\sqrt{3}$.

..... [2]

18

NOT TO
SCALE

C , E and F are points on a circle.
 $ABCD$ is a tangent to the circle at C .
 EB is parallel to FC .

(a) Show that triangle CEB is similar to triangle FCE .

.....

 [3]

(b) $CB = 6$ cm, $FE = 8$ cm and $EB = 5$ cm.

Calculate CE .

..... cm [2]

(c) Find $\frac{\text{Area of triangle } CEB}{\text{Area of triangle } FCE}$.

..... [1]

DO NOT WRITE IN THIS MARGIN

19 Simplify.

$$\frac{4a^2 + 4ab - 15b^2}{2a^2 + 2ac - 3ab - 3bc}$$

..... [5]

BLANK PAGE

DO NOT WRITE IN THIS MARGIN

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

